autoprotocol.protocol module¶
Module containing the main Protocol object and associated functions
- copyright
2021 by The Autoprotocol Development Team, see AUTHORS for more details.
- license
BSD, see LICENSE for more details
- class autoprotocol.protocol.Protocol(refs: Union[Dict[str, autoprotocol.types.ref.Ref], NoneType] = None, instructions: List[autoprotocol.instruction.Instruction] = <factory>, propagate_properties: bool = False, time_constraints: List[autoprotocol.types.protocol.TimeConstraint] = <factory>)[source]¶
- time_constraints: List[autoprotocol.types.protocol.TimeConstraint]¶
A Protocol is a sequence of instructions to be executed, and a set of containers on which those instructions act.
- Parameters
refs (list(Ref)) – Pre-existing refs that the protocol should be populated with.
instructions (list(Instruction)) – Pre-existing instructions that the protocol should be populated with.
propagate_properties (bool, optional) – Whether liquid handling operations should propagate aliquot properties from source to destination wells.
time_constraints (List(time_constraints)) – Pre-existing time_constraints that the protocol should be populated with.
Examples
Initially, a Protocol has an empty sequence of instructions and no referenced containers. To add a reference to a container, use the ref() method, which returns a Container.
p = Protocol() my_plate = p.ref("my_plate", id="ct1xae8jabbe6", cont_type="96-pcr", storage="cold_4")
To add instructions to the protocol, use the helper methods in this class
p.transfer(source=my_plate.well("A1"), dest=my_plate.well("B4"), volume="50:microliter") p.thermocycle(my_plate, groups=[ { "cycles": 1, "steps": [ { "temperature": "95:celsius", "duration": "1:hour" }] }])
Autoprotocol Output:
{ "refs": { "my_plate": { "id": "ct1xae8jabbe6", "store": { "where": "cold_4" } } }, "instructions": [ { "groups": [ { "transfer": [ { "volume": "50.0:microliter", "to": "my_plate/15", "from": "my_plate/0" } ] } ], "op": "pipette" }, { "volume": "10:microliter", "dataref": null, "object": "my_plate", "groups": [ { "cycles": 1, "steps": [ { "duration": "1:hour", "temperature": "95:celsius" } ] } ], "op": "thermocycle" } ] }
- container_type(shortname: str)[source]¶
Convert a ContainerType shortname into a ContainerType object.
- Parameters
shortname (str) – String representing one of the ContainerTypes in the _CONTAINER_TYPES dictionary.
- Returns
Returns a Container type object corresponding to the shortname passed to the function. If a ContainerType object is passed, that same ContainerType is returned.
- Return type
- Raises
ValueError – If an unknown ContainerType shortname is passed as a parameter.
- ref(name: str, id: Optional[str] = None, cont_type: Optional[Union[str, autoprotocol.container_type.ContainerType]] = None, storage: Optional[str] = None, discard: Optional[bool] = None, cover: Optional[str] = None, properties: Optional[Dict[str, str]] = None, ctx_properties: Optional[Dict[str, str]] = None)[source]¶
Add a Ref object to the dictionary of Refs associated with this protocol and return a Container with the id, container type and storage or discard conditions specified.
Example Usage:
p = Protocol() # ref a new container (no id specified) sample_ref_1 = p.ref("sample_plate_1", cont_type="96-pcr", discard=True) # ref an existing container with a known id sample_ref_2 = p.ref("sample_plate_2", id="ct1cxae33lkj", cont_type="96-pcr", storage="ambient")
Autoprotocol Output:
{ "refs": { "sample_plate_1": { "new": "96-pcr", "discard": true }, "sample_plate_2": { "id": "ct1cxae33lkj", "store": { "where": "ambient" } } }, "instructions": [] }
- Parameters
name (str) – name of the container/ref being created.
id (str, optional) – id of the container being created, from your organization’s inventory on http://secure.transcriptic.com. Strings representing ids begin with “ct”.
cont_type (str or ContainerType) – container type of the Container object that will be generated.
storage (Enum({"ambient", "cold_20", "cold_4", "warm_37"}), optional) – temperature the container being referenced should be stored at after a run is completed. Either a storage condition must be specified or discard must be set to True.
discard (bool, optional) – if no storage condition is specified and discard is set to True, the container being referenced will be discarded after a run.
cover (str, optional) – name of the cover which will be on the container/ref
properties (dict, optional) – mapping of key value properties associated to the Container
ctx_properties (dict, optional) – mapping of key value properties associated to the Container
- Returns
Container object generated from the id and container type provided
- Return type
- Raises
RuntimeError – If a container previously referenced in this protocol (existent in refs section) has the same name as the one specified.
RuntimeError – If no container type is specified.
RuntimeError – If no valid storage or discard condition is specified.
- add_time_constraint(from_dict: autoprotocol.types.protocol.TimeConstraintFromToDict, to_dict: autoprotocol.types.protocol.TimeConstraintFromToDict, less_than: Optional[Union[str, autoprotocol.unit.Unit]] = None, more_than: Optional[Union[str, autoprotocol.unit.Unit]] = None, mirror: bool = False, ideal: Optional[Union[str, autoprotocol.unit.Unit]] = None, optimization_cost: Optional[str] = None)[source]¶
Constraint the time between two instructions
Add time constraints from from_dict to to_dict. Time constraints guarantee that the time from the from_dict to the to_dict is less than or greater than some specified duration. Care should be taken when applying time constraints as constraints may make some protocols impossible to schedule or run.
Though autoprotocol orders instructions in a list, instructions do not need to be run in the order they are listed and instead depend on the preceding dependencies. Time constraints should be added with such limitations in mind.
Constraints are directional; use mirror=True if the time constraint should be added in both directions. Note that mirroring is only applied to the less_than constraint, as the more_than constraint implies both a minimum delay betweeen two timing points and also an explicit ordering between the two timing points.
Ideal time constraints are sometimes helpful for ensuring that a certain set of operations happen within some specified time. This can be specified by using the ideal parameter. There is an optional optimization_cost parameter associated with ideal time constraints for specifying the penalization system used for calculating deviations from the ideal time. When left unspecified, the optimization_cost function defaults to linear. Please refer to the ASC for more details on how this is implemented.
Example Usage:
plate_1 = protocol.ref("plate_1", id=None, cont_type="96-flat", discard=True) plate_2 = protocol.ref("plate_2", id=None, cont_type="96-flat", discard=True) protocol.cover(plate_1) time_point_1 = protocol.get_instruction_index() protocol.cover(plate_2) time_point_2 = protocol.get_instruction_index() protocol.add_time_constraint( {"mark": plate_1, "state": "start"}, {"mark": time_point_1, "state": "end"}, less_than = "1:minute") protocol.add_time_constraint( {"mark": time_point_2, "state": "start"}, {"mark": time_point_1, "state": "start"}, less_than = "1:minute", mirror=True) # Ideal time constraint protocol.add_time_constraint( {"mark": time_point_1, "state": "start"}, {"mark": time_point_2, "state": "end"}, ideal = "30:second", optimization_cost = "squared")
Autoprotocol Output:
{ "refs": { "plate_1": { "new": "96-flat", "discard": true }, "plate_2": { "new": "96-flat", "discard": true } }, "time_constraints": [ { "to": { "instruction_end": 0 }, "less_than": "1.0:minute", "from": { "ref_start": "plate_1" } }, { "to": { "instruction_start": 0 }, "less_than": "1.0:minute", "from": { "instruction_start": 1 } }, { "to": { "instruction_start": 1 }, "less_than": "1.0:minute", "from": { "instruction_start": 0 } }, { "from": { "instruction_start": 0 }, "to": { "instruction_end": 1 }, "ideal": { "value": "5:minute", "optimization_cost": "squared" } } ], "instructions": [ { "lid": "standard", "object": "plate_1", "op": "cover" }, { "lid": "standard", "object": "plate_2", "op": "cover" } ] }
- Parameters
from_dict (dict) –
Dictionary defining the initial time constraint condition. Composed of keys: “mark” and “state”
- mark: int or Container
instruction index of container
- state: “start” or “end”
specifies either the start or end of the “mark” point
to_dict (dict) – Dictionary defining the end time constraint condition. Specified in the same format as from_dict
less_than (str or Unit, optional) – max time between from_dict and to_dict
more_than (str or Unit, optional) – min time between from_dict and to_dict
mirror (bool, optional) – choice to mirror the from and to positions when time constraints should be added in both directions (only applies to the less_than constraint)
ideal (str or Unit, optional) – ideal time between from_dict and to_dict
optimization_cost (Enum({"linear", "squared", "exponential"}), optional) – cost function used for calculating the penalty for missing the ideal timing
- Raises
ValueError – If an instruction mark is less than 0
TypeError – If mark is not container or integer
TypeError – If state not in [‘start’, ‘end’]
TypeError – If any of ideal, more_than, less_than is not a Unit of the ‘time’ dimension
KeyError – If to_dict or from_dict does not contain ‘mark’
KeyError – If to_dict or from_dict does not contain ‘state’
ValueError – If time is less than ‘0:second’
ValueError – If optimization_cost is specified but ideal is not
ValueError – If more_than is greater than less_than
ValueError – If ideal is smaller than more_than or greater than less_than
RuntimeError – If from_dict and to_dict are equal
RuntimeError – If from_dict[“marker”] and to_dict[“marker”] are equal and from_dict[“state”] = “end”
- get_instruction_index()[source]¶
Get index of the last appended instruction
Example Usage:
p = Protocol() plate_1 = p.ref("plate_1", id=None, cont_type="96-flat", discard=True) p.cover(plate_1) time_point_1 = p.get_instruction_index() # time_point_1 = 0
- Raises
ValueError – If an instruction index is less than 0
- Returns
Index of the preceding instruction
- Return type
int
- batch_containers(containers: List[autoprotocol.container.Container], batch_in: bool = True, batch_out: bool = False)[source]¶
Batch containers such that they all enter or exit together.
Example Usage:
plate_1 = protocol.ref("p1", None, "96-pcr", storage="cold_4") plate_2 = protocol.ref("p2", None, "96-pcr", storage="cold_4") protocol.batch_containers([plate_1, plate_2])
Autoprotocol Output:
{ "refs": { "p1": { "new": "96-pcr", "store": { "where": "cold_4" } }, "p2": { "new": "96-pcr", "store": { "where": "cold_4" } } }, "time_constraints": [ { "from": { "ref_start": "p1" }, "less_than": "0:second", "to": { "ref_start": "p2" } }, { "from": { "ref_start": "p1" }, "more_than": "0:second", "to": { "ref_start": "p2" } } ] }
- Parameters
containers (list(Container)) – Containers to batch
batch_in (bool, optional) – Batch the entry of containers, default True
batch_out (bool, optional) – Batch the exit of containers, default False
- Raises
TypeError – If containers is not a list
TypeError – If containers is not a list of Container object
- as_dict()[source]¶
Return the entire protocol as a dictionary.
Example Usage:
from autoprotocol.protocol import Protocol import json p = Protocol() sample_ref_2 = p.ref("sample_plate_2", id="ct1cxae33lkj", cont_type="96-pcr", storage="ambient") p.seal(sample_ref_2) p.incubate(sample_ref_2, "warm_37", "20:minute") print json.dumps(p.as_dict(), indent=2)
Autoprotocol Output:
{ "refs": { "sample_plate_2": { "id": "ct1cxae33lkj", "store": { "where": "ambient" } } }, "instructions": [ { "object": "sample_plate_2", "op": "seal" }, { "duration": "20:minute", "where": "warm_37", "object": "sample_plate_2", "shaking": false, "op": "incubate" } ] }
- Returns
dict with keys “refs” and “instructions” and optionally “time_constraints” and “outs”, each of which contain the “refified” contents of their corresponding Protocol attribute.
- Return type
dict
- Raises
RuntimeError – If either refs or instructions attribute is empty
- liquid_handle_dispense(source: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], List[Tuple[autoprotocol.container.Well, int]]], destination: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup, List[autoprotocol.container.WellGroup]], volume: Union[str, autoprotocol.unit.Unit, List[Union[str, autoprotocol.unit.Unit]]], rows: int = 8, columns: int = 1, method: autoprotocol.liquid_handle.dispense.Dispense = <class 'autoprotocol.liquid_handle.dispense.Dispense'>, liquid: autoprotocol.liquid_handle.liquid_class.LiquidClass = <class 'autoprotocol.liquid_handle.liquid_class.LiquidClass'>, model: Optional[str] = None, chip_material: Optional[str] = None, nozzle: Optional[str] = None)[source]¶
Generates a liquid_handle dispense
Dispenses liquid from a source well to a group of destination wells.
Notes
Some liquidClass parameters including volume calibration and flowrate are not yet supported. There are currently no plans to support liquid level detection and its corresponding thresholds for this mode.
- Parameters
source (Well or list(Well) or list(tuple(Well, int))) – Well(s) to transfer liquid from. If the source is given as a list of (Well, int) tuples (ie: source=[(Well, 2), (Well, 5)]) the Well is the source well and the int is the number of dispense chips to use from the specified source.
destination (Well or WellGroup or list(Well) or list(WellGroup)) – Well(s) to transfer liquid to. If specifying more than a Well or WellGroup the list of destinations must match the number of chips specified in the source tuple.
volume (str or Unit or list(str) or list(Unit)) – Volume(s) of liquid to be transferred from source well to destination wells. The number of volumes specified must correspond to the number of destination wells. If specifying more than one volume to be used for all dispenses, the list of volumes must match the length of destinations.
rows (int, optional) – Number of rows to be concurrently transferred
columns (int, optional) – Number of columns to be concurrently transferred
liquid (LiquidClass or list(LiquidClass), optional) – Type(s) of liquid to be dispensed. This affects aspirate and dispense behavior including flowrates and physical movements. If the number of Dispense classes specified is more than one then number specified must match the length of sources.
method (Dispense or list(Dispense), optional) – Integrates with the specified liquid to define a set of physical movements. If the number of Dispense classes specified is more than one then number specified must match the length of sources.
model (str, optional) – Tempest chip model, currently only support “high_volume”.
chip_material (str, optional) – Tempest chip material, support “silicone” and “pfe”, default is “silicon”.
nozzle (str, optional) – Tempest nozzle type, currently only support “standard”. The three chip parameters: model, chip_material, and nozzle will be used in liquid handle mode_params to allow tempest chip specification.
- Returns
Returns a
autoprotocol.instruction.LiquidHandle
instruction created from the specified parameters.- Return type
- Raises
ValueError – if source is not a Well or list((Well, int))
ValueError – if destination and volumes are not of the same length
ValueError – if model is not high_volume
ValueError – if nozzle is not standard
ValueError – if chip_material is not in silicone or pfe
TypeError – if volume is not one of the defined allowable types
Examples
A single volume dispense to a single column
from autoprotocol import Protocol p = Protocol() source = p.ref("source", cont_type="conical-50", discard=True) destination = p.ref("destination", cont_type="96-flat", discard=True) p.liquid_handle_dispense( source=source.well(0), destination=destination.well(0), volume="5:ul" )
A single volume dispense to a whole 384 well plate
from autoprotocol import Protocol p = Protocol() source = p.ref("source", cont_type="conical-50", discard=True) destination = p.ref("destination", cont_type="384-flat", discard=True) p.liquid_handle_dispense( source=source.well(0), destination=destination.wells_from(0, 48), volume="5:ul" )
Dispensing a volume gradient across a plate
from autoprotocol import Unit from autoprotocol import Protocol p = Protocol() source = p.ref("source", cont_type="conical-50", discard=True) destination = p.ref("destination", cont_type="96-flat", discard=True) p.liquid_handle_dispense( source=source.well(0), destination=destination.wells_from(0, 12), volume=[Unit(_, "uL") for _ in range(1, 13)] )
Using multiple chips in a single source tube. The following example will dispense 100:microliters to the first 3 columns of the destination plate.
from autoprotocol import Unit from autoprotocol import Protocol p = Protocol() source = p.ref("source", cont_type="micro-2.0", discard=True).well(0) destination = p.ref("destination", cont_type="96-flat", discard=True) intake_hoses = 3 number_dispense_columns = 5 source: List[Tuple[Well, int]] = [(source, intake_hoses)] destination = [destination.wells_from(0, num_dispense_columns)] self.protocol.liquid_handle_dispense( source=source, destination=destination, volume='100:microliter', )
See also
autoprotocol.liquid_handle.Dispense
Base liquid handling method for dispense operations
- store(container: autoprotocol.container.Container, condition: str)[source]¶
Manually adjust the storage destiny for a container used within this protocol.
- Parameters
container (Container) – Container used within this protocol
condition (str) – New storage destiny for the specified Container
- Raises
TypeError – If container argument is not a Container object
RuntimeError – If the container passed is not already present in self.refs
- acoustic_transfer(source: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], dest: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], volume: Union[str, autoprotocol.unit.Unit], one_source: bool = False, droplet_size: Union[str, autoprotocol.unit.Unit] = '25:nanoliter')[source]¶
Specify source and destination wells for transferring liquid via an acoustic liquid handler. Droplet size is usually device-specific.
Example Usage:
p.acoustic_transfer( echo.wells(0,1).set_volume("12:nanoliter"), plate.wells_from(0,5), "4:nanoliter", one_source=True)
Autoprotocol Output:
"instructions": [ { "groups": [ { "transfer": [ { "volume": "0.004:microliter", "to": "plate/0", "from": "echo_plate/0" }, { "volume": "0.004:microliter", "to": "plate/1", "from": "echo_plate/0" }, { "volume": "0.004:microliter", "to": "plate/2", "from": "echo_plate/0" }, { "volume": "0.004:microliter", "to": "plate/3", "from": "echo_plate/1" }, { "volume": "0.004:microliter", "to": "plate/4", "from": "echo_plate/1" } ] } ], "droplet_size": "25:microliter", "op": "acoustic_transfer" } ]
- Parameters
source (Well or WellGroup or list(Well)) – Well or wells to transfer liquid from. If multiple source wells are supplied and one_source is set to True, liquid will be transferred from each source well specified as long as it contains sufficient volume. Otherwise, the number of source wells specified must match the number of destination wells specified and liquid will be transferred from each source well to its corresponding destination well.
dest (Well or WellGroup or list(Well)) – Well or WellGroup to which to transfer liquid. The number of destination wells must match the number of source wells specified unless one_source is set to True.
volume (str or Unit or list) – The volume(s) of liquid to be transferred from source wells to destination wells. Volume can be specified as a single string or Unit, or can be given as a list of volumes. The length of a list of volumes must match the number of destination wells given unless the same volume is to be transferred to each destination well.
one_source (bool, optional) – Specify whether liquid is to be transferred to destination wells from a group of wells all containing the same substance.
droplet_size (str or Unit, optional) – Volume representing a droplet_size. The volume of each transfer group should be a multiple of this volume.
- Returns
Returns the
autoprotocol.instruction.AcousticTransfer
instruction created from the specified parameters- Return type
- Raises
TypeError – Incorrect input types, e.g. source/dest are not Well or WellGroup or list of Well; or container_type does not have ‘acoustic_transfer’ capability.
RuntimeError – Incorrect length for source and destination
RuntimeError – Transfer volume not being a multiple of droplet size
RuntimeError – Insufficient volume in source wells
- illuminaseq(flowcell: str, lanes: List[autoprotocol.types.protocol.IlluminaSeqLane], sequencer: str, mode: str, index: str, library_size: int, dataref: str, cycles: Optional[str] = None)[source]¶
Load aliquots into specified lanes for Illumina sequencing. The specified aliquots should already contain the appropriate mix for sequencing and require a library concentration reported in ng/uL.
Example Usage:
p = Protocol() sample_wells = p.ref( "test_plate", None, "96-pcr", discard=True).wells_from(0, 8) p.illuminaseq( "PE", [ {"object": sample_wells[0], "library_concentration": 1.0}, {"object": sample_wells[1], "library_concentration": 5.32}, {"object": sample_wells[2], "library_concentration": 54}, {"object": sample_wells[3], "library_concentration": 20}, {"object": sample_wells[4], "library_concentration": 23}, {"object": sample_wells[5], "library_concentration": 23}, {"object": sample_wells[6], "library_concentration": 21}, {"object": sample_wells[7], "library_concentration": 62} ], "hiseq", "rapid", 'none', 250, "my_illumina")
Autoprotocol Output:
"instructions": [ { "dataref": "my_illumina", "index": "none", "lanes": [ { "object": "test_plate/0", "library_concentration": 1 }, { "object": "test_plate/1", "library_concentration": 5.32 }, { "object": "test_plate/2", "library_concentration": 54 }, { "object": "test_plate/3", "library_concentration": 20 }, { "object": "test_plate/4", "library_concentration": 23 }, { "object": "test_plate/5", "library_concentration": 23 }, { "object": "test_plate/6", "library_concentration": 21 }, { "object": "test_plate/7", "library_concentration": 62 } ], "flowcell": "PE", "mode": "mid", "sequencer": "hiseq", "library_size": 250, "op": "illumina_sequence" } ]
- Parameters
flowcell (str) – Flowcell designation: “SR” or ” “PE”
lanes (list(dict)) –
"lanes": [ { "object": aliquot, Well, "library_concentration": decimal, // ng/uL }, {...}]
sequencer (str) – Sequencer designation: “miseq”, “hiseq” or “nextseq”
mode (str) – Mode designation: “rapid”, “mid” or “high”
index (str) – Index designation: “single”, “dual” or “none”
library_size (int) – Library size expressed as an integer of basepairs
dataref (str) – Name of sequencing dataset that will be returned.
cycles (Enum({"read_1", "read_2", "index_1", "index_2"})) – Parameter specific to Illuminaseq read-length or number of sequenced bases. Refer to the ASC for more details
- Returns
Returns the
autoprotocol.instruction.IlluminaSeq
instruction created from the specified parameters- Return type
- Raises
TypeError – If index and dataref are not of type str.
TypeError – If library_concentration is not a number.
TypeError – If library_size is not an integer.
ValueError – If flowcell, sequencer, mode, index are not of type a valid option.
ValueError – If number of lanes specified is more than the maximum lanes of the specified type of sequencer.
KeyError – Invalid keys specified for cycles parameter
- sangerseq(cont: Union[autoprotocol.container.Container, str], wells: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], dataref: str, type: str = 'standard', primer: Optional[autoprotocol.container.Container] = None)[source]¶
Send the indicated wells of the container specified for Sanger sequencing. The specified wells should already contain the appropriate mix for sequencing, including primers and DNA according to the instructions provided by the vendor.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.sangerseq(sample_plate, sample_plate.wells_from(0,5).indices(), "seq_data_022415")
Autoprotocol Output:
"instructions": [ { "dataref": "seq_data_022415", "object": "sample_plate", "wells": [ "A1", "A2", "A3", "A4", "A5" ], "op": "sanger_sequence" } ]
- Parameters
cont (Container or str) – Container with well(s) that contain material to be sequenced.
wells (list(Well) or WellGroup or Well) – WellGroup of wells to be measured or a list of well references in the form of [“A1”, “B1”, “C5”, …]
dataref (str) – Name of sequencing dataset that will be returned.
type (Enum({"standard", "rca"})) – Sanger sequencing type
primer (Container, optional) – Tube containing sufficient primer for all RCA reactions. This field will be ignored if you specify the sequencing type as “standard”. Tube containing sufficient primer for all RCA reactions
- Returns
Returns the
autoprotocol.instruction.SangerSeq
instruction created from the specified parameters- Return type
- Raises
RuntimeError – No primer location specified for rca sequencing type
ValueError – Wells belong to more than one container
TypeError – Invalid input type for wells
- dispense(ref: autoprotocol.container.Container, reagent: Union[str, autoprotocol.container.Well], columns: List[autoprotocol.types.protocol.DispenseColumn], is_resource_id: bool = False, step_size: Union[str, autoprotocol.unit.Unit] = '5:uL', flowrate: Optional[Union[str, autoprotocol.unit.Unit]] = None, nozzle_position: Optional[autoprotocol.types.protocol.DispenseNozzlePosition] = None, pre_dispense: Optional[Union[str, autoprotocol.unit.Unit]] = None, shape: Optional[autoprotocol.types.protocol.DispenseShape] = None, shake_after: Optional[autoprotocol.types.protocol.DispenseShakeAfter] = None)[source]¶
Dispense specified reagent to specified columns.
Example Usage:
from autoprotocol.liquid_handle.liquid_handle_builders import * from autoprotocol.instructions import Dispense from autoprotocol import Protocol p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.dispense(sample_plate, "water", Dispense.builders.columns( [Dispense.builders.column(0, "10:uL"), Dispense.builders.column(1, "20:uL"), Dispense.builders.column(2, "30:uL"), Dispense.builders.column(3, "40:uL"), Dispense.builders.column(4, "50:uL") ]) ) p.dispense( sample_plate, "water", Dispense.builders.columns( [Dispense.builders.column(0, "10:uL")] ), Dispense.builders.nozzle_position( position_x=Unit("1:mm"), position_y=Unit("2:mm"), position_z=Unit("20:mm") ), shape_builder( rows=8, columns=1, format="SBS96" ) )
Autoprotocol Output:
"instructions": [ { "reagent": "water", "object": "sample_plate", "columns": [ { "column": 0, "volume": "10:microliter" }, { "column": 1, "volume": "20:microliter" }, { "column": 2, "volume": "30:microliter" }, { "column": 3, "volume": "40:microliter" }, { "column": 4, "volume": "50:microliter" } ], "op": "dispense" }, { "reagent": "water", "object": "sample_plate", "columns": [ { "column": 0, "volume": "10:microliter" } ], "nozzle_position" : { "position_x" : "1:millimeter", "position_y" : "2:millimeter", "position_z" : "20:millimeter" }, "shape" : { "rows" : 8, "columns" : 1, "format" : "SBS96" } "op": "dispense" }, ]
- Parameters
ref (Container) – Container for reagent to be dispensed to.
reagent (str or well) – Reagent to be dispensed. Use a string to specify the name or resource_id (see below) of the reagent to be dispensed. Alternatively, use a well to specify that the dispense operation must be executed using a specific aliquot as the dispense source.
columns (list(dict("column": int, "volume": str/Unit))) – Columns to be dispensed to, in the form of a list(dict) specifying the column number and the volume to be dispensed to that column. Columns are expressed as integers indexed from 0. [{“column”: <column num>, “volume”: <volume>}, …]
is_resource_id (bool, optional) – If true, interprets reagent as a resource ID
step_size (str or Unit, optional) – Specifies that the dispense operation must be executed using a peristaltic pump with the given step size. Note that the volume dispensed in each column must be an integer multiple of the step_size. Currently, step_size must be one of 5 uL, 0.5 uL, 0.05 uL. If set to None, will use vendor specified defaults.
flowrate (str or Unit, optional) – The rate at which liquid is dispensed into the ref in units of volume/time.
nozzle_position (dict, optional) – A dict represent nozzle offsets from the bottom middle of the plate’s wells. see Dispense.builders.nozzle_position; specified as {“position_x”: Unit, “position_y”: Unit, “position_z”: Unit}.
pre_dispense (str or Unit, optional) – The volume of reagent to be dispensed per-nozzle into waste immediately prior to dispensing into the ref.
shape (dict, optional) – The shape of the dispensing head to be used for the dispense. See liquid_handle_builders.shape_builder; specified as {“rows”: int, “columns”: int, “format”: str} with format being a valid SBS format.
shake_after (dict, optional) – Parameters that specify how a plate should be shaken at the very end of the instruction execution. See Dispense.builders.shake_after.
- Returns
Returns the
autoprotocol.instruction.Dispense
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid input types, e.g. ref is not of type Container
ValueError – Columns specified is invalid for this container type
ValueError – Invalid step-size given
ValueError – Invalid pre-dispense volume
- dispense_full_plate(ref: autoprotocol.container.Container, reagent: Union[str, autoprotocol.container.Well], volume: Union[str, autoprotocol.unit.Unit], is_resource_id: bool = False, step_size: Union[str, autoprotocol.unit.Unit] = '5:uL', flowrate: Optional[Union[str, autoprotocol.unit.Unit]] = None, nozzle_position: Optional[autoprotocol.types.protocol.DispenseNozzlePosition] = None, pre_dispense: Optional[Union[str, autoprotocol.unit.Unit]] = None, shape: Optional[autoprotocol.types.protocol.DispenseShape] = None, shake_after: Optional[autoprotocol.types.protocol.DispenseShakeAfter] = None)[source]¶
Dispense the specified amount of the specified reagent to every well of a container using a reagent dispenser.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.dispense_full_plate(sample_plate, "water", "100:microliter")
Autoprotocol Output:
"instructions": [ { "reagent": "water", "object": "sample_plate", "columns": [ { "column": 0, "volume": "100:microliter" }, { "column": 1, "volume": "100:microliter" }, { "column": 2, "volume": "100:microliter" }, { "column": 3, "volume": "100:microliter" }, { "column": 4, "volume": "100:microliter" }, { "column": 5, "volume": "100:microliter" }, { "column": 6, "volume": "100:microliter" }, { "column": 7, "volume": "100:microliter" }, { "column": 8, "volume": "100:microliter" }, { "column": 9, "volume": "100:microliter" }, { "column": 10, "volume": "100:microliter" }, { "column": 11, "volume": "100:microliter" } ], "op": "dispense" } ]
- Parameters
ref (Container) – Container for reagent to be dispensed to.
reagent (str or Well) – Reagent to be dispensed. Use a string to specify the name or resource_id (see below) of the reagent to be dispensed. Alternatively, use a well to specify that the dispense operation must be executed using a specific aliquot as the dispense source.
volume (Unit or str) – Volume of reagent to be dispensed to each well
is_resource_id (bool, optional) – If true, interprets reagent as a resource ID
step_size (str or Unit, optional) – Specifies that the dispense operation must be executed using a peristaltic pump with the given step size. Note that the volume dispensed in each column must be an integer multiple of the step_size. Currently, step_size must one of 5 uL, 0.5 uL, 0.05 uL. If set to None, will use vendor specified defaults.
flowrate (str or Unit, optional) – The rate at which liquid is dispensed into the ref in units of volume/time.
nozzle_position (dict, optional) – A dict represent nozzle offsets from the bottom middle of the plate’s wells. see Dispense.builders.nozzle_position; specified as {“position_x”: Unit, “position_y”: Unit, “position_z”: Unit}.
pre_dispense (str or Unit, optional) – The volume of reagent to be dispensed per-nozzle into waste immediately prior to dispensing into the ref.
shape (dict, optional) – The shape of the dispensing head to be used for the dispense. See liquid_handle_builders.shape_builder; specified as {“rows”: int, “columns”: int, “format”: str} with format being a valid SBS format.
shake_after (dict, optional) – Parameters that specify how a plate should be shaken at the very end of the instruction execution. See Dispense.builders.shake_after.
- Returns
Returns the
autoprotocol.instruction.Dispense
instruction created from the specified parameters- Return type
- spin(ref: autoprotocol.container.Container, acceleration: str, duration: Union[str, autoprotocol.unit.Unit], flow_direction: Optional[str] = None, spin_direction: Optional[List[str]] = None)[source]¶
Apply acceleration to a container.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.spin(sample_plate, "1000:g", "20:minute", flow_direction="outward")
Autoprotocol Output:
"instructions": [ { "acceleration": "1000:g", "duration": "20:minute", "flow_direction": "outward", "spin_direction": [ "cw", "ccw" ] "object": "sample_plate", "op": "spin" } ]
- Parameters
ref (Container) – The container to be centrifuged.
acceleration (str) – Acceleration to be applied to the plate, in units of g or meter/second^2.
duration (str or Unit) – Length of time that acceleration should be applied.
flow_direction (str) – Specifies the direction contents will tend toward with respect to the container. Valid directions are “inward” and “outward”, default value is “inward”.
spin_direction (list(str)) – A list of “cw” (clockwise), “cww” (counterclockwise). For each element in the list, the container will be spun in the stated direction for the set “acceleration” and “duration”. Default values are derived from the “flow_direction” parameter. If “flow_direction” is “outward”, then “spin_direction” defaults to [“cw”, “ccw”]. If “flow_direction” is “inward”, then “spin_direction” defaults to [“cw”].
- Returns
Returns the
autoprotocol.instruction.Spin
instruction created from the specified parameters- Return type
- Raises
TypeError – If ref to spin is not of type Container.
TypeError – If spin_direction or flow_direction are not properly formatted.
ValueError – If spin_direction or flow_direction do not have appropriate values.
- agitate(ref: autoprotocol.container.Container, mode: autoprotocol.types.protocol.AgitateMode, speed: Union[str, autoprotocol.unit.Unit], duration: Union[str, autoprotocol.unit.Unit], temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, mode_params: Optional[autoprotocol.types.protocol.AgitateModeParams] = None)[source]¶
Agitate a container in a specific condition for a given duration. If temperature is not specified, container is agitated at ambient temperature by default.
Example Usage:
p = Protocol() plate = p.ref("test pcr plate", id=None, cont_type="96-pcr", storage="cold_4") p.agitate( ref = plate, mode="vortex", speed="1000:rpm", duration="5:minute", temperature="25:celsius" )
Autoprotocol Output:
"instructions" : [ { "object": "test pcr plate", "mode": "vortex", "speed": "1000:rpm", "duration": "5:minute", "temperature": "25:celsius", "op": "agitate" } ]
- Parameters
ref (Container) – Container to be agitated
mode (str) – Mode by which to agitate container
speed (str or Unit) – Speed at which to agitate container
duration (str or Unit) – Specify the duration to agitate for
temperature (Unit or str, optional) – Specify target temperature to agitate container at. Defaults to ambient
mode_params (dict, optional) – Dictionary containing mode params for agitation modes
- Returns
returns a
autoprotocol.instruction.Agitate
instruction created from the specified parameters- Return type
- Raises
ValueError – If ref provided is not of type Container
ValueError – If speed is less than 0 rpm
ValueError – if duration is less than 0 minutes
ValueError – If mode_params not specified for mode stir_bar
ValueError – If valid keys for mode_params used for stir_bar are not included
ValueError – If wells specified in mode_params are not in the same container
ValueError – If bar_shape is not valid
ValueError – If bar_length is less than 0 millimeter
ValueError – If mode used does not require mode_params
TypeError – If ref cannot be undergo agitate mode roll or invert
- thermocycle(ref: autoprotocol.container.Container, groups: List[Union[autoprotocol.types.protocol.ThermocycleTemperature, autoprotocol.types.protocol.ThermocycleTemperatureGradient]], volume: Optional[Union[str, autoprotocol.unit.Unit]] = '10:microliter', dataref: Optional[str] = None, dyes: Optional[Dict[str, str]] = None, melting_start: Optional[Union[str, autoprotocol.unit.Unit]] = None, melting_end: Optional[Union[str, autoprotocol.unit.Unit]] = None, melting_increment: Optional[Union[str, autoprotocol.unit.Unit]] = None, melting_rate: Optional[Union[str, autoprotocol.unit.Unit]] = None, lid_temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None)[source]¶
Append a Thermocycle instruction to the list of instructions, with groups is a list(dict) in the form of:
"groups": [{ "cycles": integer, "steps": [ { "duration": duration, "temperature": temperature, "read": boolean // optional (default false) }, { "duration": duration, "gradient": { "top": temperature, "bottom": temperature }, "read": boolean // optional (default false) } ] }],
Thermocycle can also be used for either conventional or row-wise gradient PCR as well as qPCR. Refer to the examples below for details.
Example Usage:
- To thermocycle a container according to the protocol:
- 1 cycle:
95 degrees for 5 minutes
- 30 cycles:
95 degrees for 30 seconds
56 degrees for 20 seconds
72 degrees for 30 seconds
- 1 cycle:
72 degrees for 10 minutes
- 1 cycle:
4 degrees for 30 seconds
all cycles: Lid temperature at 97 degrees
from instruction import Thermocycle p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed before it can be thermocycled p.seal(sample_plate) p.thermocycle( sample_plate, [ Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "5:minute") ] ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "30:s"), Thermocycle.builders.step("56:celsius", "20:s"), Thermocycle.builders.step("72:celsius", "20:s"), ], cycles=30 ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("72:celsius", "10:minute") ] ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("4:celsius", "30:s") ] ) ], lid_temperature="97:celsius" )
Autoprotocol Output:
"instructions": [ { "object": "sample_plate", "op": "seal" }, { "volume": "10:microliter", "dataref": null, "object": "sample_plate", "groups": [ { "cycles": 1, "steps": [ { "duration": "5:minute", "temperature": "95:celsius" } ] }, { "cycles": 30, "steps": [ { "duration": "30:second", "temperature": "95:celsius" }, { "duration": "20:second", "temperature": "56:celsius" }, { "duration": "20:second", "temperature": "72:celsius" } ] }, { "cycles": 1, "steps": [ { "duration": "10:minute", "temperature": "72:celsius" } ] }, { "cycles": 1, "steps": [ { "duration": "30:second", "temperature": "4:celsius" } ] } ], "op": "thermocycle" } ]
To gradient thermocycle a container according to the protocol:
- 1 cycle:
95 degrees for 5 minutes
- 30 cycles:
95 degrees for 30 seconds
Top Row: * 65 degrees for 20 seconds Bottom Row: * 55 degrees for 20 seconds
72 degrees for 30 seconds
- 1 cycle:
72 degrees for 10 minutes
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed before it can be thermocycled p.seal(sample_plate) p.thermocycle( sample_plate, [ Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "5:minute") ] ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "30:s"), Thermocycle.builders.step( {"top": "65:celsius", "bottom": "55:celsius"}, "20:s" ), Thermocycle.builders.step("72:celsius", "20:s"), ], cycles=30 ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step("72:celsius", "10:minute") ] ) ] )
To conduct a qPCR, at least one dye type and the dataref field has to be specified. The example below uses SYBR dye and the following temperature profile:
- 1 cycle:
95 degrees for 3 minutes
- 40 cycles:
95 degrees for 10 seconds
60 degrees for 30 seconds (Read during extension)
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed before it can be thermocycled p.seal(sample_plate) p.thermocycle( sample_plate, [ Thermocycle.builders.group( steps=[ Thermocycle.builders.step("95:celsius", "3:minute") ] ), Thermocycle.builders.group( steps=[ Thermocycle.builders.step( "95:celsius", "10:second", read=False ), Thermocycle.builders.step( "95:celsius", "10:second", read=True ) ], cycles=40 ) ], dataref = "my_qpcr_data", dyes = {"SYBR": sample_plate.all_wells().indices()} )
- Parameters
ref (Container) – Container to be thermocycled.
groups (list(dict)) – List of thermocycling instructions formatted as above
volume (str or Unit, optional) – Volume contained in wells being thermocycled
dataref (str, optional) – Name of dataref representing read data if performing qPCR
dyes (dict, optional) – Dictionary mapping dye types to the wells they’re used in
melting_start (str or Unit, optional) – Temperature at which to start the melting curve.
melting_end (str or Unit, optional) – Temperature at which to end the melting curve.
melting_increment (str or Unit, optional) – Temperature by which to increment the melting curve. Accepted increment values are between 0.1 and 9.9 degrees celsius.
melting_rate (str or Unit, optional) – Specifies the duration of each temperature step in the melting curve.
lid_temperature (str or Unit, optional) – Specifies the lid temperature throughout the duration of the thermocycling instruction
- Returns
Returns the
autoprotocol.instruction.Thermocycle
instruction created from the specified parameters- Return type
- Raises
AttributeError – If groups are not properly formatted
TypeError – If ref to thermocycle is not of type Container.
ValueError – Container specified cannot be thermocycled
ValueError – Lid temperature is not within bounds
- incubate(ref: Union[autoprotocol.container.Container, str], where: str, duration: Union[str, autoprotocol.unit.Unit], shaking: bool = False, co2: float = 0, uncovered: bool = False, target_temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, shaking_params: Optional[autoprotocol.types.protocol.IncubateShakingParams] = None)[source]¶
Move plate to designated thermoisolater or ambient area for incubation for specified duration.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed/covered before it can be incubated p.seal(sample_plate) p.incubate(sample_plate, "warm_37", "1:hour", shaking=True)
Autoprotocol Output:
"instructions": [ { "object": "sample_plate", "op": "seal" }, { "duration": "1:hour", "where": "warm_37", "object": "sample_plate", "shaking": true, "op": "incubate", "co2_percent": 0 } ]
- Parameters
ref (Ref or str) – The container to be incubated
where (Enum({"ambient", "warm_37", "cold_4", "cold_20", "cold_80"})) – Temperature at which to incubate specified container
duration (Unit or str) – Length of time to incubate container
shaking (bool, optional) – Specify whether or not to shake container if available at the specified temperature
co2 (Number, optional) – Carbon dioxide percentage
uncovered (bool, optional) – Specify whether the container should be uncovered during incubation
target_temperature (Unit or str, optional) – Specify a target temperature for a device (eg. an incubating block) to reach during the specified duration.
shaking_params (dict, optional) – Specify “path” and “frequency” of shaking parameters to be used with compatible devices (eg. thermoshakes)
- Returns
Returns the
autoprotocol.instruction.Incubate
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid input types given, e.g. ref is not of type Container
RuntimeError – Incubating uncovered in a location which is shaking
- absorbance(ref: Union[str, autoprotocol.container.Container], wells: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], wavelength: Union[str, autoprotocol.unit.Unit], dataref: str, flashes: int = 25, incubate_before: Optional[autoprotocol.types.protocol.PlateReaderIncubateBefore] = None, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, settle_time: Optional[Union[str, autoprotocol.unit.Unit]] = None)[source]¶
Read the absorbance for the indicated wavelength for the indicated wells. Append an Absorbance instruction to the list of instructions for this Protocol object.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.absorbance(sample_plate, sample_plate.wells_from(0,12), "600:nanometer", "test_reading", flashes=50)
Autoprotocol Output:
"instructions": [ { "dataref": "test_reading", "object": "sample_plate", "wells": [ "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "A10", "A11", "A12" ], "num_flashes": 50, "wavelength": "600:nanometer", "op": "absorbance" } ]
- Parameters
ref (str or Container) – Object to execute the absorbance read on
wells (list(Well) or WellGroup or Well) – WellGroup of wells to be measured or a list of well references in the form of [“A1”, “B1”, “C5”, …]
wavelength (str or Unit) – wavelength of light absorbance to be read for the indicated wells
dataref (str) – name of this specific dataset of measured absorbances
flashes (int, optional) – number of flashes for the read
temperature (str or Unit, optional) – set temperature to heat plate reading chamber
settle_time (Unit, optional) – the time before the start of the measurement, defaults to vendor specifications
incubate_before (dict, optional) – parameters for incubation before executing the plate read See Also
Absorbance.builders.incubate_params()
- Returns
Returns the
autoprotocol.instruction.Absorbance
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid input types, e.g. wells given is of type Well, WellGroup or list of wells
ValueError – Wells specified are not from the same container
ValueError – Settle time has to be greater than 0
UnitError – Settle time is not of type Unit
- fluorescence(ref: Union[str, autoprotocol.container.Container], wells: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], excitation: Union[str, autoprotocol.unit.Unit], emission: Union[str, autoprotocol.unit.Unit], dataref: str, flashes: Optional[int] = 25, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, gain: Optional[float] = None, incubate_before: Optional[autoprotocol.types.protocol.PlateReaderIncubateBefore] = None, detection_mode: Optional[str] = None, position_z: Optional[Union[autoprotocol.types.protocol.PlateReaderPositionZCalculated, autoprotocol.types.protocol.PlateReaderPositionZManual]] = None, settle_time: Optional[Union[str, autoprotocol.unit.Unit]] = None, lag_time: Optional[Union[str, autoprotocol.unit.Unit]] = None, integration_time: Optional[str] = None)[source]¶
Read the fluoresence for the indicated wavelength for the indicated wells. Append a Fluorescence instruction to the list of instructions for this Protocol object.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.fluorescence(sample_plate, sample_plate.wells_from(0,12), excitation="587:nanometer", emission="610:nanometer", dataref="test_reading")
Autoprotocol Output:
"instructions": [ { "dataref": "test_reading", "excitation": "587:nanometer", "object": "sample_plate", "emission": "610:nanometer", "wells": [ "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "A10", "A11", "A12" ], "num_flashes": 25, "op": "fluorescence" } ]
- Parameters
ref (str or Container) – Container to plate read.
wells (list(Well) or WellGroup or Well) – WellGroup of wells to be measured or a list of well references in the form of [“A1”, “B1”, “C5”, …]
excitation (str or Unit) – Wavelength of light used to excite the wells indicated
emission (str or Unit) – Wavelength of light to be measured for the indicated wells
dataref (str) – Name of this specific dataset of measured fluoresence
flashes (int, optional) – Number of flashes.
temperature (str or Unit, optional) – set temperature to heat plate reading chamber
gain (float, optional) – float between 0 and 1, multiplier, gain=0.2 of maximum signal amplification
incubate_before (dict, optional) – parameters for incubation before executing the plate read See Also
Fluorescence.builders.incubate_params()
detection_mode (str, optional) – set the detection mode of the optics, [“top”, “bottom”], defaults to vendor specified defaults.
position_z (dict, optional) –
distance from the optics to the surface of the plate transport, only valid for “top” detection_mode and vendor capabilities. Specified as either a set distance - “manual”, OR calculated from a WellGroup - “calculated_from_wells”. Only one position_z determination may be specified
position_z = { "manual": Unit - OR - "calculated_from_wells": [] }
settle_time (Unit, optional) – the time before the start of the measurement, defaults to vendor specifications
lag_time (Unit, optional) – time between flashes and the start of the signal integration, defaults to vendor specifications
integration_time (Unit, optional) – duration of the signal recording, per Well, defaults to vendor specifications
Examples
position_z:
position_z = { "calculated_from_wells": ["plate/A1", "plate/A2"] } -OR- position_z = { "manual": "20:micrometer" }
- Returns
Returns the
autoprotocol.instruction.Fluorescence
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid input types, e.g. wells given is of type Well, WellGroup or list of wells
ValueError – Wells specified are not from the same container
ValueError – Settle time, integration time or lag time has to be greater than 0
UnitError – Settle time, integration time, lag time or position z is not of type Unit
ValueError – Unknown value given for detection_mode
ValueError – Position z specified for non-top detection mode
KeyError – For position_z, only manual and calculated_from_wells is allowed
NotImplementedError – Specifying calculated_from_wells as that has not been implemented yet
- luminescence(ref: Union[str, autoprotocol.container.Container], wells: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], dataref: str, incubate_before: Optional[autoprotocol.types.protocol.PlateReaderIncubateBefore] = None, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, settle_time: Optional[Union[str, autoprotocol.unit.Unit]] = None, integration_time: Optional[Union[str, autoprotocol.unit.Unit]] = None)[source]¶
Read luminescence of indicated wells.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.luminescence(sample_plate, sample_plate.wells_from(0,12), "test_reading")
Autoprotocol Output:
"instructions": [ { "dataref": "test_reading", "object": "sample_plate", "wells": [ "A1", "A2", "A3", "A4", "A5", "A6", "A7", "A8", "A9", "A10", "A11", "A12" ], "op": "luminescence" } ]
- Parameters
ref (str or Container) – Container to plate read.
wells (list(Well) or WellGroup or Well) – WellGroup of wells to be measured or a list of well references in the form of [“A1”, “B1”, “C5”, …]
dataref (str) – Name of this dataset of measured luminescence readings.
temperature (str or Unit, optional) – set temperature to heat plate reading chamber
settle_time (Unit, optional) – the time before the start of the measurement, defaults to vendor specifications
incubate_before (dict, optional) – parameters for incubation before executing the plate read See Also
Absorbance.builders.incubate_params()
integration_time (Unit, optional) – duration of the signal recording, per Well, defaults to vendor specifications
- Returns
Returns the
autoprotocol.instruction.Luminescence
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid input types, e.g. wells given is of type Well, WellGroup or list of wells
ValueError – Wells specified are not from the same container
ValueError – Settle time or integration time has to be greater than 0
UnitError – Settle time or integration time is not of type Unit
- gel_separate(wells: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], volume: Union[str, autoprotocol.unit.Unit], matrix: str, ladder: str, duration: Union[str, autoprotocol.unit.Unit], dataref: str)[source]¶
Separate nucleic acids on an agarose gel.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.gel_separate(sample_plate.wells_from(0,12), "10:microliter", "agarose(8,0.8%)", "ladder1", "11:minute", "genotyping_030214")
Autoprotocol Output:
"instructions": [ { "dataref": "genotyping_030214", "matrix": "agarose(8,0.8%)", "volume": "10:microliter", "ladder": "ladder1", "objects": [ "sample_plate/0", "sample_plate/1", "sample_plate/2", "sample_plate/3", "sample_plate/4", "sample_plate/5", "sample_plate/6", "sample_plate/7", "sample_plate/8", "sample_plate/9", "sample_plate/10", "sample_plate/11" ], "duration": "11:minute", "op": "gel_separate" } ]
- Parameters
wells (list(Well) or WellGroup or Well) – List of wells or WellGroup containing wells to be separated on gel.
volume (str or Unit) – Volume of liquid to be transferred from each well specified to a lane of the gel.
matrix (str) – Matrix (gel) in which to gel separate samples
ladder (str) – Ladder by which to measure separated fragment size
duration (str or Unit) – Length of time to run current through gel.
dataref (str) – Name of this set of gel separation results.
- Returns
Returns the
autoprotocol.instruction.GelSeparate
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid input types, e.g. wells given is of type Well, WellGroup or list of wells
ValueError – Specifying more wells than the number of available lanes in the selected matrix
- gel_purify(extracts: List[autoprotocol.types.protocol.GelPurifyExtract], volume: Union[str, autoprotocol.unit.Unit], matrix: str, ladder: str, dataref: str)[source]¶
Separate nucleic acids on an agarose gel and purify according to parameters. If gel extract lanes are not specified, they will be sequentially ordered and purified on as many gels as necessary.
Each element in extracts specifies a source loaded in a single lane of gel with a list of bands that will be purified from that lane. If the same source is to be run on separate lanes, a new dictionary must be added to extracts. It is also possible to add an element to extract with a source but without a list of bands. In that case, the source will be run in a lane without extraction.
Example Usage:
p = Protocol() sample_wells = p.ref("test_plate", None, "96-pcr", discard=True).wells_from(0, 8) extract_wells = [p.ref("extract_" + str(i.index), None, "micro-1.5", storage="cold_4").well(0) for i in sample_wells] extracts = [make_gel_extract_params( w, make_band_param( "TE", "5:microliter", 80, 79, extract_wells[i])) for i, w in enumerate(sample_wells)] p.gel_purify(extracts, "10:microliter", "size_select(8,0.8%)", "ladder1", "gel_purify_example")
Autoprotocol Output:
For extracts[0]
{ "band_list": [ { "band_size_range": { "max_bp": 80, "min_bp": 79 }, "destination": Well(Container(extract_0), 0, None), "elution_buffer": "TE", "elution_volume": "Unit(5.0, 'microliter')" } ], "gel": None, "lane": None, "source": Well(Container(test_plate), 0, None) }
- Parameters
extracts (list(dict)) – List of gel extraction parameters See Also
GelPurify.builders.extract()
volume (str or Unit) – Volume of liquid to be transferred from each well specified to a lane of the gel.
matrix (str) – Matrix (gel) in which to gel separate samples
ladder (str) – Ladder by which to measure separated fragment size
dataref (str) – Name of this set of gel separation results.
- Returns
Returns the
autoprotocol.instruction.GelPurify
instruction created from the specified parameters- Return type
- Raises
RuntimeError – If matrix is not properly formatted.
AttributeError – If extract parameters are not a list of dictionaries.
KeyError – If extract parameters do not contain the specified parameter keys.
ValueError – If min_bp is greater than max_bp.
ValueError – If extract destination is not of type Well.
ValueError – If extract elution volume is not of type Unit
ValueError – if extract elution volume is not greater than 0.
RuntimeError – If gel extract lanes are set for some but not all extract wells.
RuntimeError – If all samples do not fit on single gel type.
TypeError – If lane designated for gel extracts is not an integer.
RuntimeError – If designated lane index is outside lanes within the gel.
RuntimeError – If lanes not designated and number of extracts not equal to number of samples.
- seal(ref: autoprotocol.container.Container, type: Optional[str] = None, mode: Optional[str] = None, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, duration: Optional[Union[str, autoprotocol.unit.Unit]] = None)[source]¶
Seal indicated container using the automated plate sealer.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") p.seal(sample_plate, mode="thermal", temperature="160:celsius")
Autoprotocol Output:
"instructions": [ { "object": "sample_plate", "type": "ultra-clear", "mode": "thermal", "mode_params": { "temperature": "160:celsius" } "op": "seal" } ]
- Parameters
ref (Container) – Container to be sealed
type (str, optional) – Seal type to be used, such as “ultra-clear” or “foil”.
mode (str, optional) – Sealing method to be used, such as “thermal” or “adhesive”. Defaults to None, which is interpreted sensibly based on the execution environment.
temperature (Unit or str, optional) – Temperature at which to melt the sealing film onto the ref. Only applicable to thermal sealing; not respected if the sealing mode is adhesive. If unspecified, thermal sealing temperature defaults correspond with manufacturer-recommended or internally-optimized values for the target container type. Applies only to thermal sealing.
duration (Unit or str, optional) – Duration for which to press the (heated, if thermal) seal down on the ref. Defaults to manufacturer-recommended or internally- optimized seal times for the target container type. Currently applies only to thermal sealing.
- Returns
Returns the
autoprotocol.instruction.Seal
instruction created from the specified parameters- Return type
- Raises
TypeError – If ref is not of type Container.
RuntimeError – If container type does not have seal capability.
RuntimeError – If seal is not a valid seal type.
RuntimeError – If the sealing mode is invalid, or incompatible with the given ref
RuntimeError – If thermal sealing params (temperature and/or duration) are specified alongside an adhesive sealing mode.
RuntimeError – If specified thermal sealing parameters are invalid
RuntimeError – If container is already covered with a lid.
- unseal(ref: autoprotocol.container.Container)[source]¶
Remove seal from indicated container using the automated plate unsealer.
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-pcr", storage="warm_37") # a plate must be sealed to be unsealed p.seal(sample_plate) p.unseal(sample_plate)
Autoprotocol Output:
"instructions": [ { "object": "sample_plate", "op": "seal", "type": "ultra-clear" }, { "object": "sample_plate", "op": "unseal" } ]
- Parameters
ref (Container) – Container to be unsealed.
- Returns
Returns the
autoprotocol.instruction.Unseal
instruction created from the specified parameters- Return type
- Raises
TypeError – If ref is not of type Container.
RuntimeError – If container is covered with a lid not a seal.
- cover(ref: autoprotocol.container.Container, lid: Optional[str] = None, retrieve_lid: Optional[bool] = None)[source]¶
Place specified lid type on specified container
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") p.cover(sample_plate, lid="universal")
Autoprotocol Output:
"instructions": [ { "lid": "universal", "object": "sample_plate", "op": "cover" } ]
- Parameters
ref (Container) – Container to be convered.
lid (str, optional) – Type of lid to cover the container. Must be a valid lid type for the container type.
retrieve_lid (bool, optional) – Flag to retrieve lid from previously stored location (see uncover).
- Returns
Returns the
autoprotocol.instruction.Cover
instruction created from the specified parameters- Return type
- Raises
TypeError – If ref is not of type Container.
RuntimeError – If container type does not have cover capability.
RuntimeError – If lid is not a valid lid type.
RuntimeError – If container is already sealed with a seal.
TypeError – If retrieve_lid is not a boolean.
- uncover(ref: autoprotocol.container.Container, store_lid: Optional[bool] = None)[source]¶
Remove lid from specified container
Example Usage:
p = Protocol() sample_plate = p.ref("sample_plate", None, "96-flat", storage="warm_37") # a plate must have a cover to be uncovered p.cover(sample_plate, lid="universal") p.uncover(sample_plate)
Autoprotocol Output:
"instructions": [ { "lid": "universal", "object": "sample_plate", "op": "cover" }, { "object": "sample_plate", "op": "uncover" } ]
- Parameters
ref (Container) – Container to remove lid.
store_lid (bool, optional) – Flag to store the uncovered lid.
- Returns
Returns the
autoprotocol.instruction.Uncover
instruction created from the specified parameters- Return type
- Raises
TypeError – If ref is not of type Container.
RuntimeError – If container is sealed with a seal not covered with a lid.
TypeError – If store_lid is not a boolean.
- flow_cytometry(dataref: str, samples: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], lasers: List[autoprotocol.types.protocol.FlowCytometryLaser], collection_conditions: autoprotocol.types.protocol.FlowCytometryCollectionCondition, width_threshold: Optional[Union[int, float]] = None, window_extension: Optional[Union[int, float]] = None, remove_coincident_events: Optional[bool] = None)[source]¶
A non-ambiguous set of parameters for performing flow cytometry.
- Parameters
dataref (str) – Name of dataset that will be returned.
samples (list(Well) or Well or WellGroup) – Wells to be analyzed
lasers (list(dict)) – See FlowCytometryBuilders.laser.
collection_conditions (dict) – See FlowCytometryBuilders.collection_conditions.
width_threshold (int or float, optional) – Threshold to determine width measurement.
window_extension (int or float, optional) – Front and rear window extension.
remove_coincident_events (bool, optional) – Remove coincident events.
- Returns
Returns a
autoprotocol.instruction.FlowCytometry
instruction created from the specified parameters.- Return type
- Raises
TypeError – If lasers is not of type list.
TypeError – If samples is not of type Well, list of Well, or WellGroup.
TypeError – If width_threshold is not a number.
TypeError – If window_extension is not a number.
TypeError – If remove_coincident_events is not of type bool.
Examples
Example flow cytometry protocol
p = Protocol() plate = p.ref("sample-plate", cont_type="384-flat", discard=True) lasers = [FlowCytometry.builders.laser( excitation="405:nanometers", channels=[ FlowCytometry.builders.channel( emission_filter=FlowCytometry.builders.emission_filter( channel_name="VL1", shortpass="415:nanometers", longpass="465:nanometers" ), detector_gain="10:millivolts" ) ] )] collection_conds = FlowCytometry.builders.collection_conditions( acquisition_volume="5.0:ul", flowrate="12.5:ul/min", wait_time="10:seconds", mix_cycles=10, mix_volume="10:ul", rinse_cycles=10 ) p.flow_cytometry("flow-1234", plate.wells_from(0, 3), lasers, collection_conds)
Autoprotocol Output:
{ "op": "flow_cytometry", "dataref": "flow-1234", "samples": [ "sample-plate/0", "sample-plate/1", "sample-plate/2" ], "lasers": [ { "excitation": "405:nanometer", "channels": [ { "emission_filter": { "channel_name": "VL1", "shortpass": "415:nanometer", "longpass": "465:nanometer" }, "detector_gain": "10:millivolt" } ] } ], "collection_conditions": { "acquisition_volume": "5:microliter", "flowrate": "12.5:microliter/minute", "stop_criteria": { "volume": "5:microliter" }, "wait_time": "10:second", "mix_cycles": 10, "mix_volume": "10:microliter", "rinse_cycles": 10 } }
- flow_analyze(dataref: str, FSC: autoprotocol.types.protocol.FlowAnalyzeChannel, SSC: autoprotocol.types.protocol.FlowAnalyzeChannel, neg_controls: List[autoprotocol.types.protocol.FlowAnalyzeNegControls], samples: List[autoprotocol.types.protocol.FlowAnalyzeSample], colors: Optional[List[autoprotocol.types.protocol.FlowAnalyzeColors]] = None, pos_controls: Optional[List[autoprotocol.types.protocol.FlowAnalyzePosControls]] = None)[source]¶
Perform flow cytometry. The instruction will be executed within the voltage range specified for each channel, optimized for the best sample separation/distribution that can be achieved within these limits. The vendor will specify the device that this instruction is executed on and which excitation and emission spectra are available. At least one negative control is required, which will be used to define data acquisition parameters as well as to determine any autofluorescent properties for the sample set. Additional negative positive control samples are optional. Positive control samples will be used to optimize single color signals and, if desired, to minimize bleed into other channels.
For each sample this instruction asks you to specify the volume and/or captured_events. Vendors might also require captured_events in case their device does not support volumetric sample intake. If both conditions are supported, the vendor will specify if data will be collected only until the first one is met or until both conditions are fulfilled.
Example Usage:
p = Protocol() dataref = "test_ref" FSC = {"voltage_range": {"low": "230:volt", "high": "280:volt"}, "area": True, "height": True, "weight": False} SSC = {"voltage_range": {"low": "230:volt", "high": "280:volt"}, "area": True, "height": True, "weight": False} neg_controls = {"well": "well0", "volume": "100:microliter", "captured_events": 5, "channel": "channel0"} samples = [ { "well": "well0", "volume": "100:microliter", "captured_events": 9 } ] p.flow_analyze(dataref, FSC, SSC, neg_controls, samples, colors=None, pos_controls=None)
Autoprotocol Output:
{ "channels": { "FSC": { "voltage_range": { "high": "280:volt", "low": "230:volt" }, "area": true, "height": true, "weight": false }, "SSC": { "voltage_range": { "high": "280:volt", "low": "230:volt" }, "area": true, "height": true, "weight": false } }, "op": "flow_analyze", "negative_controls": { "channel": "channel0", "well": "well0", "volume": "100:microliter", "captured_events": 5 }, "dataref": "test_ref", "samples": [ { "well": "well0", "volume": "100:microliter", "captured_events": 9 } ] }
- Parameters
dataref (str) – Name of flow analysis dataset generated.
FSC (dict) –
Dictionary containing FSC channel parameters in the form of:
{ "voltage_range": { "low": "230:volt", "high": "280:volt" }, "area": true, //default: true "height": true, //default: true "weight": false //default: false }
SSC (dict) –
Dictionary of SSC channel parameters in the form of:
{ "voltage_range": { "low": <voltage>, "high": <voltage>" }, "area": true, //default: true "height": true, //default: false "weight": false //default: false }
neg_controls (list(dict)) –
List of negative control wells in the form of:
{ "well": well, "volume": volume, "captured_events": integer, // optional, default infinity "channel": [channel_name] }
at least one negative control is required.
samples (list(dict)) –
List of samples in the form of:
{ "well": well, "volume": volume, "captured_events": integer // optional, default infinity }
at least one sample is required
colors (list(dict), optional) –
Optional list of colors in the form of:
[ { "name": "FitC", "emission_wavelength": "495:nanometer", "excitation_wavelength": "519:nanometer", "voltage_range": { "low": <voltage>, "high": <voltage> }, "area": true, //default: true "height": false, //default: false "weight": false //default: false }, ... ]
pos_controls (list(dict), optional) –
Optional list of positive control wells in the form of:
[ { "well": well, "volume": volume, "captured_events": integer, // default: infinity "channel": [channel_name], "minimize_bleed": [{ // optional "from": color, "to": [color] }, ... ]
- Returns
Returns the
autoprotocol.instruction.FlowAnalyze
instruction created from the specified parameters- Return type
- Raises
TypeError – If inputs are not of the correct type.
UnitError – If unit inputs are not properly formatted.
AssertionError – If required parameters are missing.
ValueError – If volumes are not correctly formatted or present.
- oligosynthesize(oligos: List[autoprotocol.types.protocol.OligosynthesizeOligo])[source]¶
Specify a list of oligonucleotides to be synthesized and a destination for each product.
Example Usage:
oligo_1 = p.ref("oligo_1", None, "micro-1.5", discard=True) p.oligosynthesize([{"sequence": "CATGGTCCCCTGCACAGG", "destination": oligo_1.well(0), "scale": "25nm", "purification": "standard"}])
Autoprotocol Output:
"instructions": [ { "oligos": [ { "destination": "oligo_1/0", "sequence": "CATGGTCCCCTGCACAGG", "scale": "25nm", "purification": "standard" } ], "op": "oligosynthesize" } ]
- Parameters
oligos (list(dict)) –
List of oligonucleotides to synthesize. Each dictionary should contain the oligo’s sequence, destination, scale and purification
[ { "destination": "my_plate/A1", "sequence": "GATCRYMKSWHBVDN", // - standard IUPAC base codes // - IDT also allows rX (RNA), mX (2' O-methyl RNA), and // X*/rX*/mX* (phosphorothioated) // - they also allow inline annotations for // modifications, // e.g. "GCGACTC/3Phos/" for a 3' phosphorylation // e.g. "aggg/iAzideN/cgcgc" for an // internal modification "scale": "25nm" | "100nm" | "250nm" | "1um", "purification": "standard" | "page" | "hplc", // default: standard }, ... ]
- Returns
Returns the
autoprotocol.instruction.Oligosynthesize
instruction created from the specified parameters- Return type
- autopick(pick_groups: List[autoprotocol.types.protocol.AutopickGroup], criteria: Optional[Dict[str, Any]] = None, dataref: str = 'autopick')[source]¶
Pick colonies from the agar-containing location(s) specified in sources to the location(s) specified in dests in highest to lowest rank order until there are no more colonies available. If fewer than min_abort pickable colonies have been identified from the location(s) specified in sources, the run will stop and no further instructions will be executed.
Example Usage:
Autoprotocol Output:
- Parameters
pick_groups (List of AutopickGroups) –
- sourcesWell or WellGroup or list(Well) or list(WellGroup) or list(list(Well))
Reference wells containing agar and colonies to pick
- destinationsWell or WellGroup or list(Well) or list(WellGroup) or list(list(Well))
List of destination(s) for picked colonies
- min_abortint
Total number of colonies that must be detected in the aggregate list of from wells to avoid aborting the entire run. Value of 0 prevents aborting regardless of amount detected.
criteria (dict) – Dictionary of autopicking criteria.
dataref (str) – Name of dataset to save the picked colonies to
- Returns
Returns the
autoprotocol.instruction.Autopick
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid input types for sources and dests
ValueError – Source wells are not all from the same container
- mag_dry(head: str, container: autoprotocol.container.Container, duration: Union[str, autoprotocol.unit.Unit], new_tip: bool = False, new_instruction: bool = False)[source]¶
Dry beads with magnetized tips above and outside a container for a set time.
Example Usage:
p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_dry("96-pcr", plate, "30:minute", new_tip=False, new_instruction=False)
Autoprotocol Output:
"instructions": [ { "groups": [ [ { "dry": { "duration": "30:minute", "object": "plate_0" } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ]
- Parameters
head (str) – Magnetic head to use for the magnetic bead transfers
container (Container) – Container to dry beads above
duration (str or Unit) – Time for drying
new_tip (bool) – Specify whether to use a new tip to complete the step
new_instruction (bool) – Specify whether to create a new magnetic_transfer instruction
- Returns
Returns the
autoprotocol.instruction.MagneticTransfer
instruction created from the specified parameters- Return type
- mag_incubate(head: str, container: autoprotocol.container.Container, duration: Union[str, autoprotocol.unit.Unit], magnetize: bool = False, tip_position: float = 1.5, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, new_tip: bool = False, new_instruction: bool = False)[source]¶
Incubate the container for a set time with tips set at tip_position.
Example Usage:
p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_incubate("96-pcr", plate, "30:minute", magnetize=False, tip_position=1.5, temperature=None, new_tip=False)
Autoprotocol Output:
"instructions": [ { "groups": [ [ { "incubate": { "duration": "30:minute", "tip_position": 1.5, "object": "plate_0", "magnetize": false, "temperature": null } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ]
- Parameters
head (str) – Magnetic head to use for the magnetic bead transfers
container (Container) – Container to incubate beads
duration (str or Unit) – Time for incubation
magnetize (bool) – Specify whether to magnetize the tips
tip_position (float) – Position relative to well height that tips are held
temperature (str or Unit, optional) – Temperature heat block is set at
new_tip (bool) – Specify whether to use a new tip to complete the step
new_instruction (bool) – Specify whether to create a new magnetic_transfer instruction
- Returns
Returns the
autoprotocol.instruction.MagneticTransfer
instruction created from the specified parameters- Return type
- mag_collect(head: str, container: autoprotocol.container.Container, cycles: int, pause_duration: Union[str, autoprotocol.unit.Unit], bottom_position: float = 0.0, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, new_tip: bool = False, new_instruction: bool = False)[source]¶
Collect beads from a container by cycling magnetized tips in and out of the container with an optional pause at the bottom of the insertion.
Example Usage:
p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_collect("96-pcr", plate, 5, "30:second", bottom_position= 0.0, temperature=None, new_tip=False, new_instruction=False)
Autoprotocol Output:
"instructions": [ { "groups": [ [ { "collect": { "bottom_position": 0, "object": "plate_0", "temperature": null, "cycles": 5, "pause_duration": "30:second" } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ]
- Parameters
head (str) – Magnetic head to use for the magnetic bead transfers
container (Container) – Container to incubate beads
cycles (int) – Number of cycles to raise and lower tips
pause_duration (str or Unit) – Time tips are paused in bottom position each cycle
bottom_position (float) – Position relative to well height that tips are held during pause
temperature (str or Unit) – Temperature heat block is set at
new_tip (bool) – Specify whether to use a new tip to complete the step
new_instruction (bool) – Specify whether to create a new magnetic_transfer instruction
- Returns
Returns the
autoprotocol.instruction.MagneticTransfer
instruction created from the specified parameters- Return type
- mag_release(head: str, container: autoprotocol.container.Container, duration: Union[str, autoprotocol.unit.Unit], frequency: Union[str, autoprotocol.unit.Unit], center: float = 0.5, amplitude: float = 0.5, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, new_tip: bool = False, new_instruction: bool = False)[source]¶
Release beads into a container by cycling tips in and out of the container with tips unmagnetized.
Example Usage:
p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_release("96-pcr", plate, "30:second", "60:hertz", center=0.75, amplitude=0.25, temperature=None, new_tip=False, new_instruction=False)
Autoprotocol Output:
"instructions": [ { "groups": [ [ { "release": { "center": 0.75, "object": "plate_0", "frequency": "2:hertz", "amplitude": 0.25, "duration": "30:second", "temperature": null } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ]
- Parameters
head (str) – Magnetic head to use for the magnetic bead transfers
container (Container) – Container to incubate beads
duration (str or Unit) – Total time for this sub-operation
frequency (str or Unit) – Cycles per second (hertz) that tips are raised and lowered
center (float) – Position relative to well height where oscillation is centered
amplitude (float) – Distance relative to well height to oscillate around “center”
temperature (str or Unit) – Temperature heat block is set at
new_tip (bool) – Specify whether to use a new tip to complete the step
new_instruction (bool) – Specify whether to create a new magnetic_transfer instruction
- Returns
Returns the
autoprotocol.instruction.MagneticTransfer
instruction created from the specified parameters- Return type
- mag_mix(head: str, container: autoprotocol.container.Container, duration: Union[str, autoprotocol.unit.Unit], frequency: Union[str, autoprotocol.unit.Unit], center: float = 0.5, amplitude: float = 0.5, magnetize: bool = False, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, new_tip: bool = False, new_instruction: bool = False)[source]¶
Mix beads in a container by cycling tips in and out of the container.
Example Usage:
p = Protocol() plate = p.ref("plate_0", None, "96-pcr", storage="cold_20") p.mag_mix("96-pcr", plate, "30:second", "60:hertz", center=0.75, amplitude=0.25, magnetize=True, temperature=None, new_tip=False, new_instruction=False)
Autoprotocol Output:
"instructions": [ { "groups": [ [ { "mix": { "center": 0.75, "object": "plate_0", "frequency": "2:hertz", "amplitude": 0.25, "duration": "30:second", "magnetize": true, "temperature": null } } ] ], "magnetic_head": "96-pcr", "op": "magnetic_transfer" } ]
- Parameters
head (str) – Magnetic head to use for the magnetic bead transfers
container (Container) – Container to incubate beads
duration (str or Unit) – Total time for this sub-operation
frequency (str or Unit) – Cycles per second (hertz) that tips are raised and lowered
center (float) – Position relative to well height where oscillation is centered
amplitude (float) – Distance relative to well height to oscillate around “center”
magnetize (bool) – Specify whether to magnetize the tips
temperature (str or Unit) – Temperature heat block is set at
new_tip (bool) – Specify whether to use a new tip to complete the step
new_instruction (bool) – Specify whether to create a new magnetic_transfer instruction
- Returns
Returns the
autoprotocol.instruction.MagneticTransfer
instruction created from the specified parameters- Return type
- image_plate(ref: Union[str, autoprotocol.container.Container], mode: str, dataref: str)[source]¶
Capture an image of the specified container.
Example Usage:
p = Protocol() agar_plate = p.ref("agar_plate", None, "1-flat", discard=True) bact = p.ref("bacteria", None, "micro-1.5", discard=True) p.spread(bact.well(0), agar_plate.well(0), "55:microliter") p.incubate(agar_plate, "warm_37", "18:hour") p.image_plate(agar_plate, mode="top", dataref="my_plate_image_1")
Autoprotocol Output:
{ "refs": { "bacteria": { "new": "micro-1.5", "discard": true }, "agar_plate": { "new": "1-flat", "discard": true } }, "instructions": [ { "volume": "55.0:microliter", "to": "agar_plate/0", "from": "bacteria/0", "op": "spread" }, { "where": "warm_37", "object": "agar_plate", "co2_percent": 0, "duration": "18:hour", "shaking": false, "op": "incubate" }, { "dataref": "my_plate_image_1", "object": "agar_plate", "mode": "top", "op": "image_plate" } ] }
- Parameters
ref (str or Container) – Container to take image of
mode (str) – Imaging mode (currently supported: “top”)
dataref (str) – Name of data reference of resulting image
- Returns
Returns the
autoprotocol.instruction.ImagePlate
instruction created from the specified parameters- Return type
- provision(resource_id: str, dests: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], amounts: Optional[Union[str, autoprotocol.unit.Unit, List[Union[str, autoprotocol.unit.Unit]]]] = None, volumes: Optional[Union[str, autoprotocol.unit.Unit, List[Union[str, autoprotocol.unit.Unit]]]] = None, informatics: Optional[List[autoprotocol.informatics.Informatics]] = None)[source]¶
Provision a commercial resource from a catalog into the specified destination well(s). A new tip is used for each destination well specified to avoid contamination.
- Parameters
resource_id (str) – Resource ID from catalog.
dests (Well or WellGroup or list(Well)) – Destination(s) for specified resource.
amounts (str or Unit or list(str) or list(Unit)) – Volume(s) or Mass(es) to transfer of the resource to each destination well. If one volume or mass is specified, each destination well receive that volume or mass of the resource. If destinations should receive different volume or mass, each one should be specified explicitly in a list matching the order of the specified destinations. Note: Volumes and amounts arguments are mutually exclusive. Only one is required
volumes (str or Unit or list(str) or list(Unit)) – Volume to transfer of the resource to each destination well. If one volume is specified, each destination well receive that volume of the resource. If destinations should receive different volumes, each one should be specified explicitly in a list matching the order of the specified destinations. Note: Volumes and amounts arguments are mutually exclusive. Only one is required
informatics (list(Informatics)) – List of Informatics detailing aliquot effects intended from this instruction.
- Raises
TypeError – If resource_id is not a string.
TypeError – If the unit provided is not supported
TypeError – If volume or mass is not specified as a string or Unit (or a list of either)
RuntimeError – If length of the list of volumes or masses specified does not match the number of destination wells specified.
ValueError – If the resource measurement mode is volume and the provision exceeds max capacity of well.
ValueError – If the provisioning of volumes or amounts are not supported.
- Returns
autoprotocol.instruction.Provision
instruction object(s) to be appended and returned- Return type
list(Provision)
- flash_freeze(container: Union[str, autoprotocol.container.Container], duration: Union[str, autoprotocol.unit.Unit])[source]¶
Flash freeze the contents of the specified container by submerging it in liquid nitrogen for the specified amount of time.
Example Usage:
p = Protocol() sample = p.ref("liquid_sample", None, "micro-1.5", discard=True) p.flash_freeze(sample, "25:second")
Autoprotocol Output:
{ "refs": { "liquid_sample": { "new": "micro-1.5", "discard": true } }, "instructions": [ { "duration": "25:second", "object": "liquid_sample", "op": "flash_freeze" } ] }
- Parameters
- Returns
Returns the
autoprotocol.instruction.FlashFreeze
instruction created from the specified parameters- Return type
- sonicate(wells: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], duration: Union[str, autoprotocol.unit.Unit], mode: autoprotocol.types.protocol.SonicateMode, mode_params: Union[autoprotocol.types.protocol.SonicateModeParamsBath, autoprotocol.types.protocol.SonicateModeParamsHorn], frequency: Optional[Union[str, autoprotocol.unit.Unit]] = None, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None)[source]¶
Sonicate wells using high intensity ultrasonic vibrations.
Example Usage:
p = Protocol() sample_wells = p.ref("sample_plate", None, "96-pcr", storage="warm_37").wells_from(0,2) p.sonicate(sample_wells, duration="1:minute", mode="bath", mode_params={"sample_holder": "suspender"})
Autoprotocol Output:
{ "op": "sonicate", "wells": ["sample_plate/0", "sample_plate/1"], "mode": "bath", "duration": "1:minute", "temperature": "ambient", "frequency": "40:kilohertz" "mode_params": { "sample_holder": "suspender" } }
- Parameters
wells (Well or WellGroup or list(Well)) – Wells to be sonicated
duration (Unit or str) – Duration for which to sonicate wells
mode (Enum({"bath", "horn"})) – Sonicating method to be used, must be “horn” or “bath”. Sonicate mode “horn” uses metal probe to create a localized shear force directly in the sample media; “bath” mode applies ultrasound to wells held inside a bath.
temperature (Unit or str, optional) – Temperature at which the sample is kept during sonication. Optional, defaults to ambient
frequency (Unit or str, optional) – Frequency of the ultrasonic wave, usually indicated in kHz. Optional; defaults to the most commonly used frequency for each mode: 20 kHz for horn, and 40 kHz for bath mode
mode_params (Dict) –
Dictionary containing mode parameters for the specified mode.
{ "mode": "bath", "mode_params": { "sample_holder": Enum({"suspender", "perforated_container", "solid_container"}) "power": Unit or str, optional } } - or - { "mode": "horn", "mode_params": { "duty_cycle": Float, 0 < value <=1 "amplitude": Unit or str } }
- Returns
Returns the
autoprotocol.instruction.Sonicate
instruction created from the specified parameters- Return type
- Raises
RuntimeError – If valid mode is not specified.
TypeError – If wells not of type WellGroup or List of Wells.
ValueError – If invalid mode_params for specified mode.
TypeError – If invalid mode_params type for specified mode.
- spe(well: autoprotocol.container.Well, cartridge: str, pressure_mode: str, load_sample: autoprotocol.types.protocol.SpeLoadSample, elute: List[autoprotocol.types.protocol.SpeElute], condition: Optional[List[autoprotocol.types.protocol.SpeParams]] = None, equilibrate: Optional[List[autoprotocol.types.protocol.SpeParams]] = None, rinse: Optional[List[autoprotocol.types.protocol.SpeParams]] = None)[source]¶
Apply a solid phase extraction (spe) technique to a sample.
Example Usage:
p = Protocol() elute_params = [ SPE.builders.mobile_phase_params( is_elute=True, volume="2:microliter", loading_flowrate="100:ul/second", settle_time="2:minute", processing_time="3:minute", flow_pressure="2:bar", resource_id="solvent_a", destination_well=p.ref("Elute %s" % i, None, "micro-1.5", discard=True).well(0)) for i in range(3) ] sample_loading_params = SPE.builders.mobile_phase_params( volume="10:microliter", loading_flowrate="1:ul/second", settle_time="2:minute", processing_time="3:minute", flow_pressure="2:bar", is_sample=True) cartridge = "spe_cartridge" sample = p.ref("Sample", None, "micro-1.5", discard=True).well(0) p.spe(sample, cartridge, "positive", load_sample=sample_loading_params, elute=elute_params)
Autoprotocol Output:
"instructions": [ { "op": "spe", "elute": [ { "loading_flowrate": "100:microliter/second", "resource_id": "solvent_a", "settle_time": "2:minute", "volume": "2:microliter", "flow_pressure": "2:bar", "destination_well": "Elute 0/0", "processing_time": "3:minute" }, { "loading_flowrate": "100:microliter/second", "resource_id": "solvent_a", "settle_time": "2:minute", "volume": "2:microliter", "flow_pressure": "2:bar", "destination_well": "Elute 1/0", "processing_time": "3:minute" }, { "loading_flowrate": "100:microliter/second", "resource_id": "solvent_a", "settle_time": "2:minute", "volume": "2:microliter", "flow_pressure": "2:bar", "destination_well": "Elute 2/0", "processing_time": "3:minute" } ], "cartridge": "spe_cartridge", "well": "Sample/0", "load_sample": { "flow_pressure": "2:bar", "loading_flowrate": "1:microliter/second", "settle_time": "2:minute", "processing_time": "3:minute", "volume": "10:microliter" }, "pressure_mode": "positive" } ]
- Parameters
well (Well) – Well to solid phase extract.
cartridge (str) – Cartridge to use for solid phase extraction.
pressure_mode (str) – The direction of pressure applied to the cartridge to force liquid flow. One of “positive”, “negative”.
load_sample (dict) – Parameters for applying the sample to the cartridge. Single ‘mobile_phase_param’.
elute (list(dict)) – Parameters for applying a mobile phase to the cartridge with one or more solvents. List of ‘mobile_phase_params’. Requires destination_well.
condition (list(dict), optional) – Parameters for applying a mobile phase to the cartridge with one or more solvents. List of ‘mobile_phase_params’.
equilibrate (list(dict), optional) – Parameters for applying a mobile phase to the cartridge with one or more solvents. List of ‘mobile_phase_params’.
rinse (list(dict), optional) –
Parameters for applying a mobile phase to the cartridge with one or more solvents. List of ‘mobile_phase_params’.
- mobile_phase_params:
- resource_id: str
Resource ID of desired solvent.
- volume: volume
Volume added to the cartridge.
- loading_flowrate: Unit
Speed at which volume is added to cartridge.
- settle_time: Unit
Duration for which the solvent remains on the cartridge before a pressure mode is applied.
- processing_time: Unit
Duration for which pressure is applied to the cartridge after settle_time has elapsed.
- flow_pressure: Unit
Pressure applied to the column.
- destination_well: Well
Destination well for eluate. Required parameter for each elute mobile phase parameter
- Returns
Returns the
autoprotocol.instruction.SPE
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid input types, e.g. well given is not of type Well
ValueError – Wells specified are not from the same container
ValueError – Invalid pressure_mode
ValueError – settle_time, processing_time, flow_pressure not greater than 0
ValueError – If not exactly one elution parameter for each elution container
UnitError – Improperly formatted units for mobile phase parameters
- image(ref: autoprotocol.container.Container, mode: Union[str, autoprotocol.types.protocol.ImageMode], num_images: int, dataref: str, backlighting: Optional[bool] = None, magnification: float = 1.0, exposure: Optional[autoprotocol.types.protocol.ImageExposure] = None)[source]¶
Capture an image of the specified container.
Example Usage:
p = Protocol() sample = p.ref("Sample", None, "micro-1.5", discard=True) p.image(sample, "top", "image_1", num_images=3, backlighting=False, exposure={"iso": 4}, magnification=1.0)
Autoprotocol Output:
{ "refs": { "Sample": { "new": "micro-1.5", "discard": true } }, "instructions": [ { "magnification": 1.0, "backlighting": false, "mode": "top", "dataref": "image_1", "object": "Sample", "num_images": 3, "op": "image", "exposure": { "iso": 4 } } ] }
- Parameters
ref (Container) – Container of which to take image.
mode (Enum("top", "bottom", "side")) – Angle of image.
num_images (int) – Number of images taken of the container. Defaults to 1.
dataref (str) – Name of data reference of resulting image
backlighting (Bool, optional) – Whether back-lighting is desired.
magnification (float) – Ratio of sizes of the image projected on the camera sensor compared to the actual size of the object captured. Defaults to 1.0.
exposure (dict, optional) –
Parameters to control exposure: “aperture”, “iso”, and “shutter_speed”.
- shutter_speed: Unit, optional
Duration that the imaging sensor is exposed.
- isoFloat, optional
Light sensitivity of the imaging sensor.
- aperture: Float, optional
Diameter of the lens opening.
- Returns
Returns the
autoprotocol.instruction.Image
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid input types, e.g. num_images is not a positive integer
ValueError – Invalid exposure parameter supplied
- measure_concentration(wells: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], dataref: str, measurement: str, volume: str = '2:microliter')[source]¶
Measure the concentration of DNA, ssDNA, RNA or protein in the specified volume of the source aliquots.
Example Usage:
p = Protocol() test_plate = p.ref("test_plate", id=None, cont_type="96-flat", storage=None, discard=True) p.measure_concentration(test_plate.wells_from(0, 3), "mc_test", "DNA") p.measure_concentration(test_plate.wells_from(3, 3), dataref="mc_test2", measurement="protein", volume="4:microliter")
Autoprotocol Output:
{ "refs": { "test_plate": { "new": "96-flat", "discard": true } }, "instructions": [ { "volume": "2.0:microliter", "dataref": "mc_test", "object": [ "test_plate/0", "test_plate/1", "test_plate/2" ], "op": "measure_concentration", "measurement": "DNA" }, ... ] }
- Parameters
- Returns
Returns the
autoprotocol.instruction.MeasureConcentration
instruction created from the specified parameters- Return type
- Raises
TypeError – wells specified is not of a valid input type
- measure_mass(container: autoprotocol.container.Container, dataref: str)[source]¶
Measure the mass of a container.
Example Usage:
p = Protocol() test_plate = p.ref("test_plate", id=None, cont_type="96-flat", storage=None, discard=True) p.measure_mass(test_plate, "test_data")
Autoprotocol Output:
{ "refs": { "test_plate": { "new": "96-flat", "discard": true } }, "instructions": [ { "dataref": "test_data", "object": [ "test_plate" ], "op": "measure_mass" } ] }
- Parameters
container (Container) – container to be measured
dataref (str) – Name of this specific dataset of measurements
- Returns
Returns the
autoprotocol.instruction.MeasureMass
instruction created from the specified parameters- Return type
- Raises
TypeError – Input given is not of type Container
- measure_volume(wells: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], dataref: str)[source]¶
Measure the volume of each well in wells.
Example Usage:
p = Protocol() test_plate = p.ref("test_plate", id=None, cont_type="96-flat", storage=None, discard=True) p.measure_volume(test_plate.from_wells(0,2), "test_data")
Autoprotocol Output:
{ "refs": { "test_plate": { "new": "96-flat", "discard": true } }, "instructions": [ { "dataref": "test_data", "object": [ "test_plate/0", "test_plate/1" ], "op": "measure_volume" } ] }
- Parameters
- Returns
Returns the
autoprotocol.instruction.MeasureVolume
instruction created from the specified parameters- Return type
- Raises
TypeError – wells specified is not of a valid input type
- count_cells(wells: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], volume: Union[str, autoprotocol.unit.Unit], dataref: str, labels: Optional[List[str]] = None)[source]¶
Count the number of cells in a sample that are positive/negative for a given set of labels.
Example Usage:
p = Protocol() cell_suspension = p.ref( "cells_with_trypan_blue", id=None, cont_type="micro-1.5", discard=True ) p.count_cells( cell_suspension.well(0), "10:microliter", "my_cell_count", ["trypan_blue"] )
Autoprotocol Output:
{ "refs": { "cells_with_trypan_blue": { "new": "micro-1.5", "discard": true } }, "instructions": [ { "dataref": "my_cell_count", "volume": "10:microliter", "wells": [ "cells_with_trypan_blue/0" ], "labels": [ "trypan_blue" ], "op": "count_cells" } ] }
- Parameters
wells (Well or list(Well) or WellGroup) – List of wells that will be used for cell counting.
volume (Unit) – Volume that should be consumed from each well for the purpose of cell counting.
dataref (str) – Name of dataset that will be returned.
labels (list(string), optional) – Cells will be scored for presence or absence of each label in this list. If staining is required to visualize these labels, they must be added before execution of this instruction.
- Returns
Returns the
autoprotocol.instruction.CountCells
instruction created from the specified parameters- Return type
- Raises
TypeError – wells specified is not of a valid input type
- spectrophotometry(dataref: str, obj: Union[autoprotocol.container.Container, str], groups: List, interval: Optional[Union[str, autoprotocol.unit.Unit]] = None, num_intervals: Optional[int] = None, temperature: Optional[Union[str, autoprotocol.unit.Unit]] = None, shake_before: Optional[autoprotocol.types.protocol.SpectrophotometryShakeBefore] = None)[source]¶
Generates an instruction with one or more plate reading steps executed on a single plate with the same device. This could be executed once, or at a defined interval, across some total duration.
Example Usage:
p = Protocol() read_plate = p.ref("read plate", cont_type="96-flat", discard=True) groups = Spectrophotometry.builders.groups( [ Spectrophotometry.builders.group( "absorbance", Spectrophotometry.builders.absorbance_mode_params( wells=read_plate.wells(0, 1), wavelength=["100:nanometer", "200:nanometer"], num_flashes=15, settle_time="1:second" ) ), Spectrophotometry.builders.group( "fluorescence", Spectrophotometry.builders.fluorescence_mode_params( wells=read_plate.wells(0, 1), excitation=[ Spectrophotometry.builders.wavelength_selection( ideal="650:nanometer" ) ], emission=[ Spectrophotometry.builders.wavelength_selection( shortpass="600:nanometer", longpass="700:nanometer" ) ], num_flashes=15, settle_time="1:second", lag_time="9:second", integration_time="2:second", gain=0.3, read_position="top" ) ), Spectrophotometry.builders.group( "luminescence", Spectrophotometry.builders.luminescence_mode_params( wells=read_plate.wells(0, 1), num_flashes=15, settle_time="1:second", integration_time="2:second", gain=0.3 ) ), Spectrophotometry.builders.group( "shake", Spectrophotometry.builders.shake_mode_params( duration="1:second", frequency="9:hertz", path="ccw_orbital", amplitude="1:mm" ) ), ] ) shake_before = Spectrophotometry.builders.shake_before( duration="10:minute", frequency="5:hertz", path="ccw_orbital", amplitude="1:mm" ) p.spectrophotometry( dataref="test data", obj=read_plate, groups=groups, interval="10:minute", num_intervals=2, temperature="37:celsius", shake_before=shake_before )
Autoprotocol Output:
{ "op": "spectrophotometry", "dataref": "test data", "object": "read plate", "groups": [ { "mode": "absorbance", "mode_params": { "wells": [ "read plate/0", "read plate/1" ], "wavelength": [ "100:nanometer", "200:nanometer" ], "num_flashes": 15, "settle_time": "1:second" } }, { "mode": "fluorescence", "mode_params": { "wells": [ "read plate/0", "read plate/1" ], "excitation": [ { "ideal": "650:nanometer" } ], "emission": [ { "shortpass": "600:nanometer", "longpass": "700:nanometer" } ], "num_flashes": 15, "settle_time": "1:second", "lag_time": "9:second", "integration_time": "2:second", "gain": 0.3, "read_position": "top" } }, { "mode": "luminescence", "mode_params": { "wells": [ "read plate/0", "read plate/1" ], "num_flashes": 15, "settle_time": "1:second", "integration_time": "2:second", "gain": 0.3 } }, { "mode": "shake", "mode_params": { "duration": "1:second", "frequency": "9:hertz", "path": "ccw_orbital", "amplitude": "1:millimeter" } } ], "interval": "10:minute", "num_intervals": 2, "temperature": "37:celsius", "shake_before": { "duration": "10:minute", "frequency": "5:hertz", "path": "ccw_orbital", "amplitude": "1:millimeter" } }
- Parameters
dataref (str) – Name of the resultant dataset to be returned.
obj (Container or str) – Container to be read.
groups (list) – A list of groups generated by SpectrophotometryBuilders groups builders, any of absorbance_mode_params, fluorescence_mode_params, luminescence_mode_params, or shake_mode_params.
interval (Unit or str, optional) – The time between each of the read intervals.
num_intervals (int, optional) – The number of times that the groups should be executed.
temperature (Unit or str, optional) – The temperature that the entire instruction should be executed at.
shake_before (dict, optional) – A dict of params generated by SpectrophotometryBuilders.shake_before that dictates how the obj should be incubated with shaking before any of the groups are executed.
- Returns
Returns the
autoprotocol.instruction.Spectrophotometry
instruction created from the specified parameters- Return type
- Raises
TypeError – Invalid num_intervals specified, must be an int
ValueError – No interval specified but shake groups specified with no duration
- transfer(source: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], destination: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], volume: Union[str, autoprotocol.unit.Unit, List[Union[str, autoprotocol.unit.Unit]]], rows: int = 1, columns: int = 1, source_liquid: autoprotocol.liquid_handle.liquid_class.LiquidClass = <class 'autoprotocol.liquid_handle.liquid_class.LiquidClass'>, destination_liquid: autoprotocol.liquid_handle.liquid_class.LiquidClass = <class 'autoprotocol.liquid_handle.liquid_class.LiquidClass'>, method: autoprotocol.liquid_handle.transfer.Transfer = <class 'autoprotocol.liquid_handle.transfer.Transfer'>, one_tip: bool = False, density: Optional[Union[str, autoprotocol.unit.Unit]] = None, mode: Optional[str] = None, informatics: Optional[List[autoprotocol.informatics.Informatics]] = None)[source]¶
Generates LiquidHandle instructions between wells
Transfer liquid between specified pairs of source & destination wells.
- Parameters
source (Well or WellGroup or list(Well)) – Well(s) to transfer liquid from.
destination (Well or WellGroup or list(Well)) – Well(s) to transfer liquid to.
volume (str or Unit or list(str) or list(Unit)) – Volume(s) of liquid to be transferred from source wells to destination wells. The number of volumes specified must correspond to the number of destination wells.
rows (int, optional) – Number of rows to be concurrently transferred
columns (int, optional) – Number of columns to be concurrently transferred
source_liquid (LiquidClass or list(LiquidClass), optional) – Type(s) of liquid contained in the source Well. This affects the aspirate and dispense behavior including the flowrates, liquid level detection thresholds, and physical movements.
destination_liquid (LiquidClass or list(LiquidClass), optional) – Type(s) of liquid contained in the destination Well. This affects liquid level detection thresholds.
method (Transfer or list(Transfer), optional) – Integrates with the specified source_liquid and destination_liquid to define a set of physical movements.
one_tip (bool, optional) – If True then a single tip will be used for all operations
density (Unit or str, optional) – Density of the liquid to be aspirated/dispensed
mode (str, optional) – The liquid handling mode
informatics (list(Informatics), optional) – List of Informatics describing the intended aliquot effects upon completion of this instruction.
- Returns
Returns a list of
autoprotocol.instruction.LiquidHandle
instructions created from the specified parameters- Return type
list(LiquidHandle)
- Raises
ValueError – if the specified parameters can’t be interpreted as lists of equal length
ValueError – if one_tip is true, but not all transfer methods have a tip_type
Examples
Transfer between two single wells
from autoprotocol import Protocol, Unit p = Protocol() source = p.ref("source", cont_type="384-flat", discard=True) destination = p.ref( "destination", cont_type="394-pcr", discard=True ) p.transfer(source.well(0), destination.well(1), "5:ul")
Sequential transfers between two groups of wells
sources = source.wells_from(0, 8, columnwise=True) dests = destination.wells_from(1, 8, columnwise=True) volumes = [Unit(x, "ul") for x in range(1, 9)] p.transfer(sources, dests, volumes)
Concurrent transfers between two groups of wells
# single-column concurrent transfer p.transfer( source.well(0), destination.well(1), "5:ul", rows=8 ) # 96-well concurrent transfer from the A1 to B2 quadrants p.transfer( source.well(0), destination.well(13), "5:ul", rows=8, columns=12 ) # 384-well concurrent transfer p.transfer( source.well(0), destination.well(0), "5:ul", rows=16, columns=24 )
Transfer with extra parameters
from autoprotocol.liquid_handle import Transfer from autoprotocol.instruction import LiquidHandle p.transfer( source.well(0), destination.well(0), "5:ul", method=Transfer( mix_before=True, dispense_z=LiquidHandle.builders.position_z( reference="well_top" ) ) )
Transfer using other built in Transfer methods
from autoprotocol.liquid_handle import DryWellTransfer p.transfer( source.well(0), destination.well(1), "5:ul", method=DryWellTransfer )
For examples of other more complicated behavior, see the documentation for LiquidHandleMethod.
See also
Transfer
base LiquidHandleMethod for transfer operations
- mix(well: Union[autoprotocol.container.Well, List[autoprotocol.container.Well], autoprotocol.container.WellGroup], volume: Union[str, autoprotocol.unit.Unit, List[Union[str, autoprotocol.unit.Unit]]], rows: int = 1, columns: int = 1, liquid: autoprotocol.liquid_handle.liquid_class.LiquidClass = <class 'autoprotocol.liquid_handle.liquid_class.LiquidClass'>, method: autoprotocol.liquid_handle.mix.Mix = <class 'autoprotocol.liquid_handle.mix.Mix'>, one_tip: bool = False, mode: Optional[str] = None)[source]¶
Generates LiquidHandle instructions within wells
Mix liquid in specified wells.
- Parameters
well (Well or WellGroup or list(Well)) – Well(s) to be mixed.
volume (str or Unit or list(str) or list(Unit)) – Volume(s) of liquid to be mixed within the specified well(s). The number of volume(s) specified must correspond with the number of well(s).
rows (int, optional) – Number of rows to be concurrently mixed
columns (int, optional) – Number of columns to be concurrently mixed
liquid (LiquidClass or list(LiquidClass), optional) – Type(s) of liquid contained in the Well(s). This affects the aspirate and dispense behavior including the flowrates, liquid level detection thresholds, and physical movements.
method (Mix or list(Mix), optional) – Method(s) with which Integrates with the specified liquid to define a set of physical movements.
one_tip (bool, optional) – If True then a single tip will be used for all operations
mode (str, optional) – The liquid handling mode
- Returns
Returns a list of
autoprotocol.instruction.LiquidHandle
instructions created from the specified parameters- Return type
list(LiquidHandle)
- Raises
ValueError – if the specified parameters can’t be interpreted as lists of equal length
ValueError – if one_tip is true, but not all mix methods have a tip_type
ValueError – if the specified volume is larger than the maximum tip capacity of the available liquid_handling devices for a given mix
Examples
Mix within a single well
from autoprotocol import Protocol, Unit p = Protocol() plate = p.ref("example_plate", cont_type="384-flat", discard=True) p.mix(plate.well(0), "5:ul")
Sequential mixes within multiple wells
wells = plate.wells_from(0, 8, columnwise=True) volumes = [Unit(x, "ul") for x in range(1, 9)] p.mix(wells, volumes)
Concurrent mixes within multiple wells
# single-column concurrent mix p.mix(plate.well(0), "5:ul", rows=8) # 96-well concurrent mix in the A1 quadrant p.mix(plate.well(0), "5:ul", rows=8, columns=12) # 96-well concurrent mix in the A2 quadrant p.mix(plate.well(1), "5:ul", rows=8, columns=12) # 384-well concurrent mix p.mix(plate.well(0), "5:ul", rows=16, columns=24)
Mix with extra parameters
from autoprotocol.liquid_handle import Mix from autoprotocol.instruction import LiquidHandle p.mix( plate.well(0), "5:ul", rows=8, method=Mix( mix_params=LiquidHandle.builders.mix( ) ) )
See also
Mix
base LiquidHandleMethod for mix operations
- spread(source: autoprotocol.container.Well, dest: autoprotocol.container.Well, volume: Union[str, autoprotocol.unit.Unit] = '50:microliter', dispense_speed: Union[str, autoprotocol.unit.Unit] = '20:microliter/second')[source]¶
Spread the specified volume of the source aliquot across the surface of the agar contained in the object container.
Uses a spiral pattern generated by a set of liquid_handle instructions.
Example Usage: .. code-block:: python
p = Protocol()
agar_plate = p.ref(“agar_plate”, None, “1-flat”, discard=True) bact = p.ref(“bacteria”, None, “micro-1.5”, discard=True)
p.spread(bact.well(0), agar_plate.well(0), “55:microliter”)
- Parameters
source (Well) – Source of material to spread on agar
dest (Well) – Reference to destination location (plate containing agar)
volume (str or Unit, optional) – Volume of source material to spread on agar
dispense_speed (str or Unit, optional) – Speed at which to dispense source aliquot across agar surface
- Returns
Returns a
autoprotocol.instruction.LiquidHandle
instruction created from the specified parameters- Return type
- Raises
TypeError – If specified source is not of type Well
TypeError – If specified destination is not of type Well
- evaporate(ref: autoprotocol.container.Container, mode: autoprotocol.types.protocol.EvaporateMode, duration: Union[str, autoprotocol.unit.Unit], evaporator_temperature: Union[str, autoprotocol.unit.Unit], mode_params: Optional[autoprotocol.types.protocol.EvaporateModeParams] = None)[source]¶
Removes liquid or moisture from a container using the mode specified.
Example Usage:
p = Protocol() c = p.ref("container", id=None, cont_type="micro-1.5", storage="cold_20") blowdown_params = Evaporate.builders.get_mode_params( mode="blowdown", mode_params={ "gas":"nitrogen", "vortex_speed":Unit("200:rpm"), "blow_rate": "200:uL/sec" } ) p.evaporate( c, mode="blowdown", duration="10:minute", evaporator_temperature="22:degC", mode_params = blowdown_params )
{ "op": "evaporate", "ref": "container", "mode": "blowdown", "duration": "10:minute", "evaporator_temperature": "22:degC", "mode_params": { "gas": "ntirogen", "vortex_speed": "200:rpm", "blow_rate": "200:uL/sec" } }
- Parameters
ref (Container) – Sample container
mode (Str) – The mode of evaporation method
duration (Unit or Str) – The length of time the sample is evaporated for
evaporator_temperature (Unit or str) – The incubation temperature of the sample being evaporated
mode_params (Dict) – Dictionary of parameters for evaporation mode
- Returns
Returns a
autoprotocol.instruction.Evaporate
instruction created from the specified parameters- Return type
- Raises
TypeError – If the provided object is not a Container type.
ValueError – If the duration is less than 0 minute
TypeError – If evaporator_temperature is not provided in Unit or str
ValueError – If the evaporation_temperature is lower than or equal to condenser_temperature